Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $123$ | |
| Group : | $(C_2\times OD_{16}).C_2$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $2$ | |
| Generators: | (1,7)(2,8)(3,6)(4,5)(9,16,10,15)(11,14,12,13), (1,11)(2,12)(3,9)(4,10)(5,13,6,14)(7,15,8,16) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 6, $C_2^2$ 8: $D_{4}$ x 3, $C_4\times C_2$ x 3, $Q_8$ 16: $C_2^2:C_4$ x 3, $C_4^2$, $C_4:C_4$ x 3 32: 32T41 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$, $D_{4}$ x 2
Degree 8: $D_4$
Low degree siblings
16T74 x 4, 32T64 x 2, 32T131Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 5, 6)( 7, 8)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 5, 6)( 7, 8)( 9,10)(11,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,11,10,12)(13,16,14,15)$ |
| $ 4, 4, 4, 4 $ | $1$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,12,10,11)(13,15,14,16)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 3, 2, 4)( 5, 8, 6, 7)( 9,11,10,12)(13,15,14,16)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 3, 2, 4)( 5, 8, 6, 7)( 9,12,10,11)(13,16,14,15)$ |
| $ 4, 4, 4, 4 $ | $1$ | $4$ | $( 1, 4, 2, 3)( 5, 8, 6, 7)( 9,11,10,12)(13,16,14,15)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $4$ | $4$ | $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,13,10,14)(11,16,12,15)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $4$ | $4$ | $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,14,10,13)(11,15,12,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $4$ | $4$ | $( 1, 5, 2, 6)( 3, 7, 4, 8)( 9,13)(10,14)(11,16)(12,15)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $4$ | $4$ | $( 1, 5, 2, 6)( 3, 7, 4, 8)( 9,14)(10,13)(11,15)(12,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $4$ | $4$ | $( 1, 9)( 2,10)( 3,12)( 4,11)( 5,15, 6,16)( 7,14, 8,13)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $4$ | $4$ | $( 1, 9, 2,10)( 3,12, 4,11)( 5,15)( 6,16)( 7,14)( 8,13)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $4$ | $4$ | $( 1, 9)( 2,10)( 3,12)( 4,11)( 5,16, 6,15)( 7,13, 8,14)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $4$ | $4$ | $( 1, 9, 2,10)( 3,12, 4,11)( 5,16)( 6,15)( 7,13)( 8,14)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1,13, 3,15, 2,14, 4,16)( 5,11, 8,10, 6,12, 7, 9)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1,13, 4,16, 2,14, 3,15)( 5,11, 7, 9, 6,12, 8,10)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1,13, 4,16, 2,14, 3,15)( 5,12, 7,10, 6,11, 8, 9)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1,13, 3,15, 2,14, 4,16)( 5,12, 8, 9, 6,11, 7,10)$ |
Group invariants
| Order: | $64=2^{6}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [64, 18] |
| Character table: Data not available. |