Properties

Label 16T1228
Order \(1024\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group Yes

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $1228$
Parity:  $1$
Primitive:  No
Nilpotency class:  $4$
Generators:  (1,6)(2,5)(3,7)(4,8)(9,14)(10,13)(11,16)(12,15), (1,8)(2,7)(3,4)(9,12,10,11), (1,14,8,16,2,13,7,15)(3,10,5,11,4,9,6,12), (9,10)(13,14)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 15
4:  $C_2^2$ x 35
8:  $D_{4}$ x 20, $C_2^3$ x 15
16:  $D_4\times C_2$ x 30, $C_2^4$
32:  $C_2^2 \wr C_2$ x 8, $C_2^3 : D_4 $ x 2, $C_2^2 \times D_4$ x 5
64:  $(((C_4 \times C_2): C_2):C_2):C_2$ x 8, 16T87, 16T105 x 2, 16T109 x 4
128:  16T245 x 4, 32T1237
256:  16T531 x 2, 16T536
512:  32T13404

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$ x 3

Degree 4: $C_2^2$, $D_{4}$ x 2

Degree 8: $D_4\times C_2$

Low degree siblings

16T1180 x 8, 16T1228 x 3, 16T1234 x 4, 32T36058 x 8, 32T36059 x 4, 32T36060 x 4, 32T36061 x 4, 32T36062 x 4, 32T36063 x 4, 32T36064 x 4, 32T36447 x 2, 32T36448 x 2, 32T36449 x 4, 32T36450 x 4, 32T36451 x 2, 32T36452 x 4, 32T36453 x 2, 32T36454 x 2, 32T36455 x 4, 32T36456 x 2, 32T36507 x 2, 32T36508 x 2, 32T36509 x 2, 32T36510 x 2, 32T36511 x 2, 32T36512 x 2, 32T51253 x 2, 32T52392 x 2, 32T52398 x 2, 32T52436 x 2, 32T52437 x 2, 32T52442 x 2, 32T52443 x 2, 32T55499 x 2, 32T55505 x 2, 32T64483 x 2, 32T64563 x 2, 32T70252, 32T70255, 32T85214 x 2, 32T85235 x 2, 32T86551, 32T88763, 32T88765, 32T96658

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 61 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $1024=2^{10}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.