Properties

Label 16T1224
Order \(1024\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group Yes

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $1224$
Parity:  $1$
Primitive:  No
Nilpotency class:  $4$
Generators:  (5,8)(6,7)(9,12)(10,11)(13,16)(14,15), (1,5,2,6)(3,7,4,8)(9,13)(10,14)(11,16)(12,15), (1,9,7,16)(2,10,8,15)(3,12,5,14)(4,11,6,13)
$|\Aut(F/K)|$:  $4$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_4$ x 4, $C_2^2$ x 7
8:  $D_{4}$ x 12, $C_4\times C_2$ x 6, $C_2^3$
16:  $D_4\times C_2$ x 6, $C_2^2:C_4$ x 12, $C_4\times C_2^2$
32:  $C_2^2 \wr C_2$ x 4, $C_2^3 : C_4 $ x 12, $C_2 \times (C_2^2:C_4)$ x 3
64:  $((C_8 : C_2):C_2):C_2$ x 24, 16T76 x 6, 16T79
128:  16T227 x 12, 16T240 x 3
256:  16T502 x 6, 16T581
512:  16T911 x 3

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: $C_4$

Degree 8: $((C_8 : C_2):C_2):C_2$ x 3

Low degree siblings

16T1224 x 1023, 32T36422 x 3072, 32T36423 x 768, 32T36424 x 768, 32T36425 x 1536, 32T36426 x 6144, 32T36427 x 1536, 32T36428 x 1536, 32T36429 x 768, 32T50165 x 128

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 88 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $1024=2^{10}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.