Properties

Label 16T1220
Order \(1024\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group Yes

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $1220$
Parity:  $1$
Primitive:  No
Nilpotency class:  $4$
Generators:  (1,8)(2,7)(3,4)(9,12,10,11), (1,5,2,6)(3,7)(4,8)(9,13,10,14)(11,16)(12,15), (1,14,8,16,2,13,7,15)(3,10,5,11,4,9,6,12), (9,10)(13,14)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 15
4:  $C_2^2$ x 35
8:  $D_{4}$ x 12, $C_2^3$ x 15
16:  $D_4\times C_2$ x 18, $Q_8:C_2$ x 4, $C_2^4$
32:  $C_2^2 \wr C_2$ x 4, $C_2^3 : D_4 $ x 2, $C_2 \times (C_4\times C_2):C_2$ x 2, $C_2^2 \times D_4$ x 3
64:  $(((C_4 \times C_2): C_2):C_2):C_2$ x 4, 16T73, 16T105, 16T115 x 4, 16T117
128:  16T245 x 2, 32T1074
256:  16T473, 16T494 x 2
512:  32T15122

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$ x 3

Degree 4: $C_2^2$, $D_{4}$ x 2

Degree 8: $D_4\times C_2$

Low degree siblings

16T1129 x 8, 16T1159 x 4, 16T1220 x 3, 32T35645 x 8, 32T35646 x 4, 32T35647 x 4, 32T35648 x 4, 32T35649 x 4, 32T35650 x 4, 32T35651 x 4, 32T35868 x 4, 32T35869 x 2, 32T35870 x 2, 32T35871 x 2, 32T35872 x 2, 32T35873 x 2, 32T35874 x 2, 32T36375 x 2, 32T36376 x 2, 32T36377 x 4, 32T36378 x 2, 32T36379 x 4, 32T36380 x 2, 32T36381 x 2, 32T36382 x 4, 32T36383 x 2, 32T51746 x 2, 32T51748 x 2, 32T52422 x 2, 32T52428 x 2, 32T54838 x 2, 32T54839 x 2, 32T55510 x 2, 32T55519 x 2, 32T55626 x 2, 32T64557 x 2, 32T64573 x 2, 32T71209, 32T71271, 32T85202 x 2, 32T85223 x 2, 32T86555, 32T88757, 32T88829, 32T96660

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 55 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $1024=2^{10}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.