Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $121$ | |
| Group : | $(C_2\times C_4).D_4$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $3$ | |
| Generators: | (1,2)(3,4)(5,6)(7,14,12,10)(8,13,11,9)(15,16), (1,12,15,10,6,7,3,14)(2,11,16,9,5,8,4,13) | |
| $|\Aut(F/K)|$: | $8$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 6, $C_2^2$ 8: $D_{4}$ x 3, $C_4\times C_2$ x 3, $Q_8$ 16: $C_2^2:C_4$ x 3, $C_4^2$, $C_4:C_4$ x 3 32: $C_4\wr C_2$ x 2, 32T41 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 8: $C_2^2:C_4$, $C_4\wr C_2$ x 2
Low degree siblings
16T121 x 3, 32T129, 32T350Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 4, 4, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $4$ | $( 7, 9,12,13)( 8,10,11,14)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 7,12)( 8,11)( 9,13)(10,14)$ |
| $ 4, 4, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $4$ | $( 7,13,12, 9)( 8,14,11,10)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $2$ | $4$ | $( 1, 2)( 3, 4)( 5, 6)( 7,10,12,14)( 8, 9,11,13)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7,11)( 8,12)( 9,14)(10,13)(15,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $2$ | $4$ | $( 1, 2)( 3, 4)( 5, 6)( 7,14,12,10)( 8,13,11, 9)(15,16)$ |
| $ 4, 4, 4, 4 $ | $1$ | $4$ | $( 1, 3, 6,15)( 2, 4, 5,16)( 7,10,12,14)( 8, 9,11,13)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $2$ | $4$ | $( 1, 3, 6,15)( 2, 4, 5,16)( 7,11)( 8,12)( 9,14)(10,13)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 3, 6,15)( 2, 4, 5,16)( 7,14,12,10)( 8,13,11, 9)$ |
| $ 4, 4, 4, 4 $ | $1$ | $4$ | $( 1, 4, 6,16)( 2, 3, 5,15)( 7, 9,12,13)( 8,10,11,14)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $2$ | $4$ | $( 1, 4, 6,16)( 2, 3, 5,15)( 7,12)( 8,11)( 9,13)(10,14)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 4, 6,16)( 2, 3, 5,15)( 7,13,12, 9)( 8,14,11,10)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 5)( 2, 6)( 3,16)( 4,15)( 7,11)( 8,12)( 9,14)(10,13)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $2$ | $4$ | $( 1, 5)( 2, 6)( 3,16)( 4,15)( 7,14,12,10)( 8,13,11, 9)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 6)( 2, 5)( 3,15)( 4,16)( 7,12)( 8,11)( 9,13)(10,14)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $2$ | $4$ | $( 1, 6)( 2, 5)( 3,15)( 4,16)( 7,13,12, 9)( 8,14,11,10)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 7, 2, 8)( 3,10, 4, 9)( 5,11, 6,12)(13,15,14,16)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 7, 3,10, 6,12,15,14)( 2, 8, 4, 9, 5,11,16,13)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 7, 5,11)( 2, 8, 6,12)( 3,10,16,13)( 4, 9,15,14)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 7,15,14, 6,12, 3,10)( 2, 8,16,13, 5,11, 4, 9)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 8, 2, 7)( 3, 9, 4,10)( 5,12, 6,11)(13,16,14,15)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 8, 3, 9, 6,11,15,13)( 2, 7, 4,10, 5,12,16,14)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 8, 5,12)( 2, 7, 6,11)( 3, 9,16,14)( 4,10,15,13)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 8,15,13, 6,11, 3, 9)( 2, 7,16,14, 5,12, 4,10)$ |
| $ 4, 4, 4, 4 $ | $1$ | $4$ | $( 1,15, 6, 3)( 2,16, 5, 4)( 7,14,12,10)( 8,13,11, 9)$ |
| $ 4, 4, 4, 4 $ | $1$ | $4$ | $( 1,16, 6, 4)( 2,15, 5, 3)( 7,13,12, 9)( 8,14,11,10)$ |
Group invariants
| Order: | $64=2^{6}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [64, 20] |
| Character table: Data not available. |