Properties

Label 16T1202
Order \(1024\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group Yes

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $1202$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $4$
Generators:  (1,14)(2,13)(3,15)(4,16)(5,9,6,10)(7,11,8,12), (1,10,3,12,2,9,4,11)(5,13)(6,14)(7,16)(8,15), (1,7,3,6,2,8,4,5)(9,14,12,16,10,13,11,15)
$|\Aut(F/K)|$:  $4$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_4$ x 4, $C_2^2$ x 7
8:  $D_{4}$ x 12, $C_4\times C_2$ x 6, $C_2^3$
16:  $D_4\times C_2$ x 6, $C_2^2:C_4$ x 12, $C_4\times C_2^2$
32:  $C_4\wr C_2$ x 6, $C_2^2 \wr C_2$ x 4, $C_2 \times (C_2^2:C_4)$ x 3
64:  $(C_4^2 : C_2):C_2$ x 3, $(((C_4 \times C_2): C_2):C_2):C_2$, 16T79, 16T106 x 3, 16T111 x 3, 16T138 x 3, 16T146
128:  32T1151, 32T1153 x 3, 32T1154 x 3
256:  16T500 x 3, 64T? x 4
512:  128T?

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$ x 3

Degree 4: $C_2^2$

Degree 8: $(((C_4 \times C_2): C_2):C_2):C_2$

Low degree siblings

16T1202 x 15, 32T36265 x 24, 32T36266 x 24, 32T36267 x 8, 32T56437 x 24

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 106 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $1024=2^{10}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.