Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $120$ | |
| Group : | $(C_2\times D_4):C_4$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $3$ | |
| Generators: | (1,2)(3,4)(9,12,10,11)(13,15,14,16), (1,6)(2,5)(3,8)(4,7)(9,16,10,15)(11,13,12,14), (1,16)(2,15)(3,9)(4,10)(5,11)(6,12)(7,13)(8,14) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_4$ x 4, $C_2^2$ x 7 8: $D_{4}$ x 4, $C_4\times C_2$ x 6, $C_2^3$ 16: $D_4\times C_2$ x 2, $C_2^2:C_4$ x 4, $C_4\times C_2^2$ 32: $C_2 \times (C_2^2:C_4)$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$, $D_{4}$ x 2
Degree 8: $D_4\times C_2$
Low degree siblings
16T101, 16T112 x 2, 16T120 x 3, 32T103 x 2, 32T104, 32T117 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 9,10)(11,12)(13,14)(15,16)$ |
| $ 4, 4, 2, 2, 1, 1, 1, 1 $ | $4$ | $4$ | $( 5, 6)( 7, 8)( 9,11,10,12)(13,16,14,15)$ |
| $ 4, 4, 2, 2, 1, 1, 1, 1 $ | $4$ | $4$ | $( 5, 6)( 7, 8)( 9,12,10,11)(13,15,14,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 4, 4, 4, 4 $ | $1$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,15,10,16)(11,13,12,14)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,16,10,15)(11,14,12,13)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $4$ | $4$ | $( 1, 3, 2, 4)( 5, 8, 6, 7)( 9,13)(10,14)(11,16)(12,15)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $4$ | $4$ | $( 1, 3, 2, 4)( 5, 8, 6, 7)( 9,14)(10,13)(11,15)(12,16)$ |
| $ 4, 4, 4, 4 $ | $1$ | $4$ | $( 1, 4, 2, 3)( 5, 8, 6, 7)( 9,16,10,15)(11,14,12,13)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 5, 2, 6)( 3, 7, 4, 8)( 9,13,10,14)(11,15,12,16)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 5, 2, 6)( 3, 7, 4, 8)( 9,14,10,13)(11,16,12,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 7)( 2, 8)( 3, 6)( 4, 5)( 9,11)(10,12)(13,15)(14,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 7)( 2, 8)( 3, 6)( 4, 5)( 9,12)(10,11)(13,16)(14,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 9)( 2,10)( 3,15)( 4,16)( 5,13)( 6,14)( 7,12)( 8,11)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 9, 2,10)( 3,15, 4,16)( 5,13, 6,14)( 7,12, 8,11)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 9, 7,11)( 2,10, 8,12)( 3,15, 6,13)( 4,16, 5,14)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 9, 8,12)( 2,10, 7,11)( 3,15, 5,14)( 4,16, 6,13)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1,13, 8,16)( 2,14, 7,15)( 3,12, 5, 9)( 4,11, 6,10)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1,13, 7,15)( 2,14, 8,16)( 3,12, 6,10)( 4,11, 5, 9)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1,13, 2,14)( 3,12, 4,11)( 5,10, 6, 9)( 7,16, 8,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1,13)( 2,14)( 3,12)( 4,11)( 5,10)( 6, 9)( 7,16)( 8,15)$ |
Group invariants
| Order: | $64=2^{6}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [64, 91] |
| Character table: Data not available. |