Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $1194$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $7$ | |
| Generators: | (1,12,5,16,9,3,14,7)(2,11,6,15,10,4,13,8), (1,14,10,5,2,13,9,6)(3,15,11,7,4,16,12,8) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 2, $C_2^2$ 8: $D_{4}$ x 2, $C_8$ x 2, $C_4\times C_2$ 16: $C_8:C_2$, $C_2^2:C_4$, $C_8\times C_2$ 32: $(C_8:C_2):C_2$, $C_2^3 : C_4 $, $C_2^2 : C_8$ 64: $((C_8 : C_2):C_2):C_2$ x 2, 16T84 128: 16T228 256: 16T565 512: 16T817 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $C_4$
Degree 8: $C_8$
Low degree siblings
16T1194 x 7, 16T1216 x 8, 32T36186 x 16, 32T36187 x 16, 32T36188 x 16, 32T36189 x 16, 32T36190 x 16, 32T36191 x 8, 32T36192 x 32, 32T36193 x 16, 32T36194 x 16, 32T36195 x 32, 32T36196 x 8, 32T36197 x 16, 32T36198 x 16, 32T36199 x 4, 32T36200 x 8, 32T36201 x 8, 32T36202 x 4, 32T36203 x 8, 32T36350 x 16, 32T36351 x 8, 32T36352 x 8, 32T36353 x 16, 32T36354 x 4, 32T36355 x 4, 32T50842 x 4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $8$ | $2$ | $( 1, 9)( 2,10)( 3,12)( 4,11)( 5,14)( 6,13)( 7,16)( 8,15)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $( 3, 4)( 5, 6)(11,12)(13,14)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 3, 4)( 7, 8)(11,12)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 4, 4, 4, 4 $ | $32$ | $4$ | $( 1, 5, 9,14)( 2, 6,10,13)( 3, 7,12,16)( 4, 8,11,15)$ |
| $ 4, 4, 4, 4 $ | $32$ | $4$ | $( 1,14, 9, 5)( 2,13,10, 6)( 3,16,12, 7)( 4,15,11, 8)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $8$ | $2$ | $( 7, 8)( 9,10)(11,12)(13,14)$ |
| $ 4, 4, 4, 4 $ | $16$ | $4$ | $( 1, 9, 2,10)( 3,12, 4,11)( 5,14, 6,13)( 7,15, 8,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $8$ | $2$ | $( 5, 6)( 9,10)(11,12)(15,16)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $( 7, 8)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $8$ | $2$ | $( 1, 9)( 2,10)( 3,12)( 4,11)( 5,14)( 6,13)( 7,15)( 8,16)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $4$ | $2$ | $( 3, 4)( 5, 6)( 7, 8)(11,12)(13,14)(15,16)$ |
| $ 8, 8 $ | $64$ | $8$ | $( 1,12, 5,16, 9, 3,14, 7)( 2,11, 6,15,10, 4,13, 8)$ |
| $ 8, 8 $ | $64$ | $8$ | $( 1, 3, 5, 7, 9,12,14,16)( 2, 4, 6, 8,10,11,13,15)$ |
| $ 8, 8 $ | $64$ | $8$ | $( 1,16,14,12, 9, 7, 5, 3)( 2,15,13,11,10, 8, 6, 4)$ |
| $ 8, 8 $ | $64$ | $8$ | $( 1, 7,14, 3, 9,16, 5,12)( 2, 8,13, 4,10,15, 6,11)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $8$ | $2$ | $(11,12)(15,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $32$ | $4$ | $( 1, 9)( 2,10)( 3,12, 4,11)( 5,14)( 6,13)( 7,16, 8,15)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $8$ | $2$ | $( 3, 4)( 5, 6)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $8$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(13,14)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $8$ | $2$ | $( 1, 2)( 7, 8)( 9,10)(11,12)$ |
| $ 4, 4, 4, 4 $ | $32$ | $4$ | $( 1, 5, 9,14)( 2, 6,10,13)( 3, 7,12,15)( 4, 8,11,16)$ |
| $ 4, 4, 4, 4 $ | $32$ | $4$ | $( 1,14, 9, 5)( 2,13,10, 6)( 3,16,11, 7)( 4,15,12, 8)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $8$ | $2$ | $(13,14)(15,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $32$ | $4$ | $( 1, 9)( 2,10)( 3,12)( 4,11)( 5,14, 6,13)( 7,16, 8,15)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $8$ | $2$ | $( 3, 4)( 5, 6)(11,12)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $8$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $8$ | $2$ | $( 1, 2)( 7, 8)( 9,10)(13,14)$ |
| $ 8, 8 $ | $64$ | $8$ | $( 1, 5, 9,14, 2, 6,10,13)( 3, 7,12,16, 4, 8,11,15)$ |
| $ 8, 8 $ | $64$ | $8$ | $( 1,14,10, 6, 2,13, 9, 5)( 3,16,11, 8, 4,15,12, 7)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $8$ | $2$ | $( 7, 8)( 9,10)(11,12)(15,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $32$ | $4$ | $( 1, 9, 2,10)( 3,12, 4,11)( 5,14)( 6,13)( 7,15)( 8,16)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $8$ | $2$ | $( 3, 4)( 5, 6)( 7, 8)( 9,10)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $8$ | $2$ | $( 5, 6)( 9,10)(11,12)(13,14)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $8$ | $2$ | $( 3, 4)( 9,10)$ |
| $ 8, 8 $ | $64$ | $8$ | $( 1,12, 5,16,10, 4,13, 7)( 2,11, 6,15, 9, 3,14, 8)$ |
| $ 8, 8 $ | $64$ | $8$ | $( 1, 3, 5, 7, 9,12,14,15)( 2, 4, 6, 8,10,11,13,16)$ |
| $ 8, 8 $ | $64$ | $8$ | $( 1,16,13,12, 9, 7, 5, 3)( 2,15,14,11,10, 8, 6, 4)$ |
| $ 8, 8 $ | $64$ | $8$ | $( 1, 7,14, 4,10,15, 5,12)( 2, 8,13, 3, 9,16, 6,11)$ |
Group invariants
| Order: | $1024=2^{10}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | Data not available |
| Character table: Data not available. |