Properties

Label 16T1192
Order \(1024\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group Yes

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $1192$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $6$
Generators:  (1,14,7,10,2,13,8,9)(3,15,6,12,4,16,5,11), (1,5,2,6)(3,7,4,8)(9,15,12,14,10,16,11,13)
$|\Aut(F/K)|$:  $4$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_4$ x 6, $C_2^2$
8:  $D_{4}$ x 3, $C_4\times C_2$ x 3, $Q_8$
16:  $C_2^2:C_4$ x 3, $C_4^2$, $C_4:C_4$ x 3
32:  $C_4\wr C_2$ x 2, $C_2^3 : C_4 $ x 2, 32T41
64:  $((C_8 : C_2):C_2):C_2$, $(((C_4 \times C_2): C_2):C_2):C_2$, 16T74, 16T77, 16T121, 16T140, 16T154
128:  32T1095, 32T1311, 32T1313
256:  16T521, 16T563, 16T590
512:  32T13179

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: $C_4$

Degree 8: $((C_8 : C_2):C_2):C_2$

Low degree siblings

16T1192 x 15, 32T36166 x 8, 32T36167 x 8, 32T36168 x 16, 32T36169 x 16, 32T36170 x 8, 32T56480 x 8

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 88 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $1024=2^{10}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.