Properties

Label 16T1191
Order \(1024\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group Yes

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $1191$
Parity:  $1$
Primitive:  No
Nilpotency class:  $5$
Generators:  (1,5)(2,6)(3,8)(4,7)(9,10)(15,16), (1,10)(2,9)(3,11)(4,12)(5,13,6,14)(7,16,8,15), (9,10)(11,12)(13,14)(15,16), (3,4)(7,8)(11,12)(15,16), (1,4)(2,3)(5,6)(11,12)(13,15)(14,16)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 15
4:  $C_2^2$ x 35
8:  $D_{4}$ x 12, $C_2^3$ x 15
16:  $D_4\times C_2$ x 18, $Q_8:C_2$ x 4, $C_2^4$
32:  $C_2^2 \wr C_2$ x 4, $C_2^3 : D_4 $ x 2, $C_2 \times (C_4\times C_2):C_2$ x 2, $C_2^2 \times D_4$ x 3
64:  $(((C_4 \times C_2): C_2):C_2):C_2$ x 4, 16T73, 16T105, 16T115 x 4, 16T117
128:  16T245 x 2, 32T1074
256:  16T473, 16T477, 16T636
512:  32T13161

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: $D_{4}$

Degree 8: $(((C_4 \times C_2): C_2):C_2):C_2$

Low degree siblings

16T1191 x 7, 32T36159 x 4, 32T36160 x 4, 32T36161 x 4, 32T36162 x 4, 32T36163 x 4, 32T36164 x 4, 32T36165 x 4, 32T52432 x 4, 32T52434 x 4, 32T64511 x 2, 32T85201 x 2, 32T85234 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 55 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $1024=2^{10}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.