Properties

Label 16T119
Order \(64\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group Yes
Group: $C_2^4:C_2^2$

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $119$
Group :  $C_2^4:C_2^2$
Parity:  $1$
Primitive:  No
Nilpotency class:  $2$
Generators:  (1,16)(2,15)(3,5)(4,6), (1,10,2,9)(3,11,4,12)(5,14,6,13)(7,15,8,16), (7,10)(8,9)(11,14)(12,13), (1,5)(2,6)(3,16)(4,15)(7,12)(8,11)(9,14)(10,13), (1,16)(2,15)(7,10)(8,9)
$|\Aut(F/K)|$:  $4$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 15
4:  $C_2^2$ x 35
8:  $D_{4}$ x 4, $C_2^3$ x 15
16:  $D_4\times C_2$ x 6, $C_2^4$
32:  $C_2^3 : D_4 $ x 2, $C_2^2 \times D_4$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$ x 3

Degree 4: $C_2^2$, $D_{4}$ x 2

Degree 8: $D_4$, $C_2^3 : D_4 $ x 2

Low degree siblings

16T87 x 8, 16T119 x 3, 32T85 x 4, 32T86 x 4, 32T128 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ $2$ $2$ $( 7,10)( 8, 9)(11,14)(12,13)$
$ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ $2$ $2$ $( 3, 5)( 4, 6)(11,14)(12,13)$
$ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ $2$ $2$ $( 3, 5)( 4, 6)( 7,10)( 8, 9)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $1$ $2$ $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $2$ $2$ $( 1, 2)( 3, 4)( 5, 6)( 7, 9)( 8,10)(11,13)(12,14)(15,16)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $2$ $2$ $( 1, 2)( 3, 6)( 4, 5)( 7, 8)( 9,10)(11,13)(12,14)(15,16)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $2$ $2$ $( 1, 2)( 3, 6)( 4, 5)( 7, 9)( 8,10)(11,12)(13,14)(15,16)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $4$ $2$ $( 1, 3)( 2, 4)( 5,16)( 6,15)( 7,12)( 8,11)( 9,14)(10,13)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $4$ $2$ $( 1, 3)( 2, 4)( 5,16)( 6,15)( 7,13)( 8,14)( 9,11)(10,12)$
$ 4, 4, 4, 4 $ $4$ $4$ $( 1, 3,16, 5)( 2, 4,15, 6)( 7,12,10,13)( 8,11, 9,14)$
$ 4, 4, 4, 4 $ $4$ $4$ $( 1, 3,16, 5)( 2, 4,15, 6)( 7,13,10,12)( 8,14, 9,11)$
$ 4, 4, 4, 4 $ $4$ $4$ $( 1, 7, 2, 8)( 3,11, 4,12)( 5,14, 6,13)( 9,16,10,15)$
$ 4, 4, 4, 4 $ $4$ $4$ $( 1, 7,15, 9)( 2, 8,16,10)( 3,11, 6,13)( 4,12, 5,14)$
$ 4, 4, 4, 4 $ $4$ $4$ $( 1, 7, 2, 8)( 3,14, 4,13)( 5,11, 6,12)( 9,16,10,15)$
$ 4, 4, 4, 4 $ $4$ $4$ $( 1, 7,15, 9)( 2, 8,16,10)( 3,14, 6,12)( 4,13, 5,11)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $4$ $2$ $( 1,11)( 2,12)( 3, 7)( 4, 8)( 5,10)( 6, 9)(13,15)(14,16)$
$ 4, 4, 4, 4 $ $4$ $4$ $( 1,11,16,14)( 2,12,15,13)( 3, 7, 5,10)( 4, 8, 6, 9)$
$ 4, 4, 4, 4 $ $4$ $4$ $( 1,11,16,14)( 2,12,15,13)( 3,10, 5, 7)( 4, 9, 6, 8)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $4$ $2$ $( 1,11)( 2,12)( 3,10)( 4, 9)( 5, 7)( 6, 8)(13,15)(14,16)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $1$ $2$ $( 1,15)( 2,16)( 3, 6)( 4, 5)( 7, 9)( 8,10)(11,13)(12,14)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $1$ $2$ $( 1,16)( 2,15)( 3, 5)( 4, 6)( 7,10)( 8, 9)(11,14)(12,13)$

Group invariants

Order:  $64=2^{6}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  [64, 215]
Character table: Data not available.