Properties

Label 16T1189
Order \(1024\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group Yes

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $1189$
Parity:  $1$
Primitive:  No
Nilpotency class:  $5$
Generators:  (1,2)(3,4)(5,6)(7,8)(9,13,10,14)(11,16,12,15), (1,5)(2,6)(3,8)(4,7)(9,10)(15,16), (1,9)(2,10)(3,12)(4,11)(5,14)(6,13)(7,16)(8,15), (9,10)(11,12)(13,14)(15,16), (1,4)(2,3)(5,6)(11,12)(13,15)(14,16)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 15
4:  $C_2^2$ x 35
8:  $D_{4}$ x 20, $C_2^3$ x 15
16:  $D_4\times C_2$ x 30, $C_2^4$
32:  $C_2^2 \wr C_2$ x 8, $C_2^3 : D_4 $ x 2, $C_2^2 \times D_4$ x 5
64:  $(((C_4 \times C_2): C_2):C_2):C_2$ x 4, 16T87, 16T105 x 2, 16T109 x 4
128:  $C_2 \wr C_2\wr C_2$ x 2, 16T245 x 2, 32T1237
256:  16T477, 16T509, 16T531
512:  32T12264

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: $D_{4}$

Degree 8: $(((C_4 \times C_2): C_2):C_2):C_2$

Low degree siblings

16T1189 x 7, 32T36138 x 4, 32T36139 x 4, 32T36140 x 4, 32T36141 x 4, 32T36142 x 4, 32T36143 x 4, 32T36144 x 4, 32T52448 x 4, 32T52450 x 4, 32T64551 x 2, 32T85213 x 2, 32T85222 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 61 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $1024=2^{10}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.