Properties

Label 16T1188
Order \(1024\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group Yes

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $1188$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $5$
Generators:  (1,15)(2,16)(3,13,4,14)(5,10,8,11)(6,9,7,12), (1,6,3,7)(2,5,4,8)(9,15,10,16)(11,13)(12,14), (1,8,4,6)(2,7,3,5)(9,14)(10,13)(11,16,12,15)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_4$ x 4, $C_2^2$ x 7
8:  $D_{4}$ x 12, $C_4\times C_2$ x 6, $C_2^3$
16:  $D_4\times C_2$ x 6, $C_2^2:C_4$ x 12, $C_4\times C_2^2$
32:  $C_2^2 \wr C_2$ x 4, $C_2^3 : C_4 $ x 12, $C_2 \times (C_2^2:C_4)$ x 3
64:  16T76 x 6, 16T79
128:  16T240 x 3
256:  16T537 x 2, 16T581
512:  64T?

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$ x 3

Degree 4: $C_2^2$

Degree 8: $C_2^3: C_4$

Low degree siblings

16T1188 x 15, 32T36132 x 8, 32T36133 x 64, 32T36134 x 16, 32T36135 x 16, 32T36136 x 8, 32T36137 x 8, 32T42952 x 8, 32T50812 x 16

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 52 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $1024=2^{10}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.