Properties

Label 16T1177
Order \(1024\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group Yes

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $1177$
Parity:  $1$
Primitive:  No
Nilpotency class:  $4$
Generators:  (1,2)(3,4)(5,9)(6,10)(7,12)(8,11), (9,10)(11,12)(13,14)(15,16), (1,11,3,10)(2,12,4,9)(5,13,7,16)(6,14,8,15), (1,3)(2,4)
$|\Aut(F/K)|$:  $4$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 15
4:  $C_2^2$ x 35
8:  $D_{4}$ x 20, $C_2^3$ x 15
16:  $D_4\times C_2$ x 30, $C_2^4$
32:  $C_2^2 \wr C_2$ x 8, $C_2^3 : D_4 $ x 2, $C_2^2 \times D_4$ x 5
64:  $(C_4^2 : C_2):C_2$ x 4, $(((C_4 \times C_2): C_2):C_2):C_2$ x 4, 16T87, 16T105 x 2, 16T109 x 4
128:  $C_2 \wr C_2\wr C_2$ x 4, 16T245 x 2, 16T265 x 2, 32T1237
256:  16T477 x 2, 16T509 x 2, 16T511, 16T531, 16T538
512:  32T12264 x 2, 32T12969

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: $D_{4}$

Degree 8: $(C_4^2 : C_2):C_2$, $C_2 \wr C_2\wr C_2$ x 2

Low degree siblings

16T1177 x 127, 32T36029 x 32, 32T36030 x 64, 32T36031 x 64, 32T36032 x 64, 32T36033 x 64, 32T36034 x 32, 32T36035 x 64, 32T36036 x 32, 32T36037 x 64, 32T44596 x 16, 32T44616 x 16, 32T44624 x 32, 32T48169 x 16, 32T48264 x 32, 32T48267 x 32, 32T48291 x 16, 32T48303 x 32, 32T48385 x 32, 32T51962 x 32, 32T55736 x 32, 32T55864 x 16, 32T56654 x 16

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 76 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $1024=2^{10}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.