Properties

Label 16T1163
Order \(1024\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group Yes

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $1163$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $5$
Generators:  (1,6,3,7,2,5,4,8)(9,15,11,14,10,16,12,13), (1,12)(2,11)(3,9,4,10)(5,14,8,16)(6,13,7,15), (1,16)(2,15)(3,14)(4,13)(5,11,6,12)(7,10,8,9)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_4$ x 4, $C_2^2$ x 7
8:  $D_{4}$ x 12, $C_4\times C_2$ x 6, $C_2^3$
16:  $D_4\times C_2$ x 6, $C_2^2:C_4$ x 12, $C_4\times C_2^2$
32:  $C_2^2 \wr C_2$ x 4, $C_2^3 : C_4 $ x 4, $C_2 \times (C_2^2:C_4)$ x 3
64:  $(((C_4 \times C_2): C_2):C_2):C_2$ x 2, 16T76 x 2, 16T79, 16T146 x 2
128:  16T240, 32T1151 x 2
256:  16T482 x 2, 16T532
512:  32T12466

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$ x 3

Degree 4: $C_2^2$

Degree 8: $(((C_4 \times C_2): C_2):C_2):C_2$

Low degree siblings

16T1163 x 7, 32T35907 x 4, 32T35908 x 8, 32T35909 x 4, 32T35910 x 8, 32T35911 x 4, 32T50100 x 4, 32T56990 x 8, 32T69699 x 4, 32T70735 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 52 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $1024=2^{10}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.