Properties

Label 16T1127
Order \(1024\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group Yes

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $1127$
Parity:  $1$
Primitive:  No
Nilpotency class:  $5$
Generators:  (1,12,2,11)(3,10,4,9)(5,15)(6,16)(7,14)(8,13), (1,11)(2,12)(3,10)(4,9)(7,8)(13,14), (9,10)(11,12)(13,14)(15,16), (1,5)(2,6)(3,7)(4,8)(9,16)(10,15)(11,14)(12,13), (1,4)(2,3)(5,7)(6,8)(11,12)(13,14)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 15
4:  $C_2^2$ x 35
8:  $D_{4}$ x 20, $C_2^3$ x 15
16:  $D_4\times C_2$ x 30, $C_2^4$
32:  $C_2^2 \wr C_2$ x 8, $C_2^3 : D_4 $ x 2, $C_2^2 \times D_4$ x 5
64:  $(((C_4 \times C_2): C_2):C_2):C_2$ x 4, 16T87, 16T105 x 2, 16T109 x 4
128:  16T245 x 2, 32T1237
256:  16T479 x 2, 16T531
512:  32T12299

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: $D_{4}$

Degree 8: $(((C_4 \times C_2): C_2):C_2):C_2$

Low degree siblings

16T1127 x 15, 32T35632 x 8, 32T35633 x 16, 32T35634 x 32, 32T35635 x 8, 32T35636 x 16, 32T35637 x 8, 32T35638 x 16, 32T35639 x 16, 32T46317 x 8

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 58 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $1024=2^{10}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.