Properties

Label 16T1123
Order \(1024\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group Yes

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $1123$
Parity:  $1$
Primitive:  No
Nilpotency class:  $4$
Generators:  (1,2)(3,4), (1,9,5,13,2,10,6,14)(3,12,7,15,4,11,8,16), (1,5,2,6)(3,4)(9,13)(10,14), (1,7,2,8)(3,5,4,6)(9,15,10,16)(11,14,12,13), (9,10)(13,14)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 15
4:  $C_2^2$ x 35
8:  $D_{4}$ x 12, $C_2^3$ x 15
16:  $D_4\times C_2$ x 18, $Q_8:C_2$ x 4, $C_2^4$
32:  $C_2^2 \wr C_2$ x 4, $C_2^3 : D_4 $ x 2, $C_2 \times (C_4\times C_2):C_2$ x 2, $C_2^2 \times D_4$ x 3
64:  $(((C_4 \times C_2): C_2):C_2):C_2$ x 4, 16T73, 16T105, 16T115 x 4, 16T117
128:  16T245 x 2, 32T1074
256:  16T473, 16T494 x 2
512:  32T15122

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$ x 3

Degree 4: $C_2^2$

Degree 8: $Q_8:C_2$

Low degree siblings

16T1123 x 3, 16T1169 x 8, 16T1241 x 4, 32T35594 x 2, 32T35595 x 4, 32T35596 x 4, 32T35597 x 4, 32T35598 x 4, 32T35599 x 4, 32T35600 x 2, 32T35601 x 2, 32T35602 x 2, 32T35603 x 2, 32T35604 x 2, 32T35955 x 8, 32T35956 x 4, 32T35957 x 4, 32T35958 x 4, 32T35959 x 4, 32T35960 x 4, 32T35961 x 4, 32T36557 x 2, 32T36558 x 2, 32T36559 x 4, 32T36560 x 2, 32T36561 x 4, 32T36562 x 2, 32T36563 x 2, 32T36564 x 4, 32T36565 x 2, 32T52412 x 2, 32T52413 x 2, 32T54837 x 2, 32T54840 x 2, 32T55512 x 2, 32T55517 x 2, 32T55576 x 2, 32T55580 x 2, 32T64496 x 2, 32T64569 x 2, 32T71212, 32T71259, 32T85210 x 2, 32T85228 x 2, 32T86552, 32T87360, 32T96662, 32T96664

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 55 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $1024=2^{10}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.