Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $111$ | |
| Group : | $C_2\times C_4\wr C_2$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $3$ | |
| Generators: | (1,4,6,16)(2,3,5,15), (1,11,4,14,6,7,16,9)(2,12,3,13,5,8,15,10), (1,10,6,13)(2,9,5,14)(3,11,15,7)(4,12,16,8) | |
| $|\Aut(F/K)|$: | $8$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_4$ x 4, $C_2^2$ x 7 8: $D_{4}$ x 4, $C_4\times C_2$ x 6, $C_2^3$ 16: $D_4\times C_2$ x 2, $C_2^2:C_4$ x 4, $C_4\times C_2^2$ 32: $C_4\wr C_2$ x 2, $C_2 \times (C_2^2:C_4)$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$, $D_{4}$ x 2
Degree 8: $D_4\times C_2$, $C_4\wr C_2$ x 2
Low degree siblings
16T111 x 3, 32T116, 32T266 x 2, 32T351Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 4, 4, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $4$ | $( 7, 9,11,14)( 8,10,12,13)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 7,11)( 8,12)( 9,14)(10,13)$ |
| $ 4, 4, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $4$ | $( 7,14,11, 9)( 8,13,12,10)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $2$ | $4$ | $( 1, 2)( 3, 4)( 5, 6)( 7,10,11,13)( 8, 9,12,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7,12)( 8,11)( 9,13)(10,14)(15,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $2$ | $4$ | $( 1, 2)( 3, 4)( 5, 6)( 7,13,11,10)( 8,14,12, 9)(15,16)$ |
| $ 4, 4, 4, 4 $ | $1$ | $4$ | $( 1, 3, 6,15)( 2, 4, 5,16)( 7,10,11,13)( 8, 9,12,14)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $2$ | $4$ | $( 1, 3, 6,15)( 2, 4, 5,16)( 7,12)( 8,11)( 9,13)(10,14)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 3, 6,15)( 2, 4, 5,16)( 7,13,11,10)( 8,14,12, 9)$ |
| $ 4, 4, 4, 4 $ | $1$ | $4$ | $( 1, 4, 6,16)( 2, 3, 5,15)( 7, 9,11,14)( 8,10,12,13)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $2$ | $4$ | $( 1, 4, 6,16)( 2, 3, 5,15)( 7,11)( 8,12)( 9,14)(10,13)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 4, 6,16)( 2, 3, 5,15)( 7,14,11, 9)( 8,13,12,10)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 5)( 2, 6)( 3,16)( 4,15)( 7,12)( 8,11)( 9,13)(10,14)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $2$ | $4$ | $( 1, 5)( 2, 6)( 3,16)( 4,15)( 7,13,11,10)( 8,14,12, 9)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 6)( 2, 5)( 3,15)( 4,16)( 7,11)( 8,12)( 9,14)(10,13)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $2$ | $4$ | $( 1, 6)( 2, 5)( 3,15)( 4,16)( 7,14,11, 9)( 8,13,12,10)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 7)( 2, 8)( 3,10)( 4, 9)( 5,12)( 6,11)(13,15)(14,16)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 7, 4, 9, 6,11,16,14)( 2, 8, 3,10, 5,12,15,13)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 7, 6,11)( 2, 8, 5,12)( 3,10,15,13)( 4, 9,16,14)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 7,16,14, 6,11, 4, 9)( 2, 8,15,13, 5,12, 3,10)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 8)( 2, 7)( 3, 9)( 4,10)( 5,11)( 6,12)(13,16)(14,15)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 8, 4,10, 6,12,16,13)( 2, 7, 3, 9, 5,11,15,14)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 8, 6,12)( 2, 7, 5,11)( 3, 9,15,14)( 4,10,16,13)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 8,16,13, 6,12, 4,10)( 2, 7,15,14, 5,11, 3, 9)$ |
| $ 4, 4, 4, 4 $ | $1$ | $4$ | $( 1,15, 6, 3)( 2,16, 5, 4)( 7,13,11,10)( 8,14,12, 9)$ |
| $ 4, 4, 4, 4 $ | $1$ | $4$ | $( 1,16, 6, 4)( 2,15, 5, 3)( 7,14,11, 9)( 8,13,12,10)$ |
Group invariants
| Order: | $64=2^{6}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [64, 101] |
| Character table: Data not available. |