Properties

Label 16T1102
Order \(1024\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group Yes

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $1102$
Parity:  $1$
Primitive:  No
Nilpotency class:  $4$
Generators:  (1,2)(7,8), (1,3,5,16)(2,4,6,15)(7,9,11,14)(8,10,12,13), (1,10)(2,9)(3,12,4,11)(5,13,6,14)(7,15)(8,16), (1,2)(15,16)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 15
4:  $C_4$ x 8, $C_2^2$ x 35
8:  $D_{4}$ x 8, $C_4\times C_2$ x 28, $C_2^3$ x 15
16:  $D_4\times C_2$ x 12, $C_2^2:C_4$ x 16, $C_4\times C_2^2$ x 14, $C_2^4$
32:  $C_2^3 : C_4 $ x 8, $C_2^3 : D_4 $ x 4, $C_2 \times (C_2^2:C_4)$ x 12, $C_2^2 \times D_4$ x 2, 32T34
64:  16T68 x 2, 16T76 x 12, 16T87 x 4, 32T262
128:  32T992, 32T1107 x 2
256:  16T454 x 2, 16T470
512:  32T11559

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$ x 3

Degree 4: $C_4$ x 2, $C_2^2$

Degree 8: $C_4\times C_2$

Low degree siblings

16T1090 x 16, 16T1099 x 8, 16T1102 x 7, 32T35333 x 16, 32T35334 x 32, 32T35335 x 8, 32T35336 x 16, 32T35337 x 32, 32T35338 x 16, 32T35339 x 8, 32T35410 x 8, 32T35411 x 32, 32T35412 x 8, 32T35413 x 8, 32T35414 x 4, 32T35415 x 4, 32T35439 x 16, 32T35440 x 16, 32T35441 x 4, 32T35442 x 64, 32T35443 x 16, 32T35444 x 16, 32T35445 x 16, 32T35446 x 16, 32T35447 x 8, 32T35448 x 16, 32T35449 x 4, 32T35450 x 8, 32T35451 x 16, 32T35452 x 8, 32T35453 x 16, 32T44298 x 4, 32T45936 x 8

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 64 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $1024=2^{10}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.