Properties

Label 16T1086
Order \(1024\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group Yes

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $1086$
Parity:  $1$
Primitive:  No
Nilpotency class:  $4$
Generators:  (1,2)(3,4), (1,7,2,8)(3,5,4,6)(9,15,10,16)(11,14,12,13), (1,14,8,16,2,13,7,15)(3,11,5,10,4,12,6,9), (9,10)(13,14)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 15
4:  $C_4$ x 8, $C_2^2$ x 35
8:  $D_{4}$ x 56, $C_4\times C_2$ x 28, $C_2^3$ x 15
16:  $D_4\times C_2$ x 84, $C_2^2:C_4$ x 112, $C_4\times C_2^2$ x 14, $C_2^4$
32:  $C_2^2 \wr C_2$ x 112, $C_2 \times (C_2^2:C_4)$ x 84, $C_2^2 \times D_4$ x 14, 32T34
64:  16T79 x 56, 16T105 x 28, 32T262 x 7
128:  16T325 x 8, 32T1149 x 7
256:  32T5587
512:  32T22451

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: $C_4$, $D_{4}$ x 2

Degree 8: $C_2^2:C_4$

Low degree siblings

16T1086 x 15, 16T1100 x 32, 32T35289 x 32, 32T35290 x 32, 32T35291 x 32, 32T35292 x 16, 32T35293 x 32, 32T35294 x 16, 32T35295 x 8, 32T35296 x 32, 32T35297 x 8, 32T35298 x 8, 32T35299 x 8, 32T35300 x 16, 32T35301 x 8, 32T35302 x 8, 32T35303 x 8, 32T35416 x 32, 32T35417 x 32, 32T35418 x 32, 32T35419 x 32, 32T35420 x 32, 32T35421 x 16, 32T35422 x 16, 32T35423 x 32, 32T35424 x 32, 32T35425 x 32, 32T35426 x 32, 32T35427 x 16, 32T35428 x 16, 32T35429 x 32, 32T35430 x 32, 32T35431 x 32, 32T35432 x 16, 32T35433 x 16

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 97 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $1024=2^{10}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.