Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $1049$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,15,2,16)(3,9,4,10)(5,12,6,11)(7,14,8,13), (1,9,2,10)(3,12)(4,11)(5,13)(6,14)(7,16,8,15), (1,9,3,16,7,14)(2,10,4,15,8,13)(5,11)(6,12) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_2^2$ x 7 6: $S_3$ 8: $C_2^3$ 12: $D_{6}$ x 3 24: $S_4$, $S_3 \times C_2^2$ 48: $S_4\times C_2$ x 3 96: 12T48 192: $V_4^2:(S_3\times C_2)$ 384: 12T136 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $S_4$
Degree 8: $S_4\times C_2$
Low degree siblings
16T1049, 16T1051 x 2, 16T1058 x 4, 32T34676, 32T34677, 32T34678 x 2, 32T34681, 32T34682, 32T34700 x 2, 32T34701 x 2, 32T34702 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 4, 4, 4, 4 $ | $12$ | $4$ | $( 1, 4, 2, 3)( 5, 8, 6, 7)( 9,12,10,11)(13,15,14,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $6$ | $2$ | $( 5, 6)( 7, 8)( 9,10)(11,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $12$ | $2$ | $( 1, 8)( 2, 7)( 3, 6)( 4, 5)( 9,15)(10,16)(11,14)(12,13)$ |
| $ 3, 3, 3, 3, 1, 1, 1, 1 $ | $32$ | $3$ | $( 3, 6, 8)( 4, 5, 7)( 9,13,12)(10,14,11)$ |
| $ 6, 6, 2, 2 $ | $32$ | $6$ | $( 1, 2)( 3, 5, 8, 4, 6, 7)( 9,14,12,10,13,11)(15,16)$ |
| $ 4, 4, 4, 4 $ | $24$ | $4$ | $( 1,15, 2,16)( 3, 9, 4,10)( 5,12, 6,11)( 7,14, 8,13)$ |
| $ 8, 8 $ | $48$ | $8$ | $( 1,14, 6, 9, 2,13, 5,10)( 3,12, 7,16, 4,11, 8,15)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $24$ | $4$ | $( 1,15, 2,16)( 3,10)( 4, 9)( 5,11, 6,12)( 7,14)( 8,13)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $12$ | $2$ | $( 3, 7)( 4, 8)( 9,14)(10,13)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $12$ | $2$ | $( 1, 2)( 3, 8)( 4, 7)( 5, 6)( 9,13)(10,14)(11,12)(15,16)$ |
| $ 4, 4, 4, 4 $ | $48$ | $4$ | $( 1, 4, 6, 7)( 2, 3, 5, 8)( 9,16,13,11)(10,15,14,12)$ |
| $ 4, 4, 2, 2, 1, 1, 1, 1 $ | $24$ | $4$ | $( 3, 8, 4, 7)( 5, 6)( 9,14,10,13)(11,12)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1,15, 2,16)( 3,14, 4,13)( 5,12, 6,11)( 7, 9, 8,10)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $24$ | $4$ | $( 1,14, 2,13)( 3,16, 4,15)( 5,10)( 6, 9)( 7,12)( 8,11)$ |
| $ 12, 4 $ | $64$ | $12$ | $( 1,15, 2,16)( 3,11, 7,13, 6,10, 4,12, 8,14, 5, 9)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 9,10)(11,12)(13,14)(15,16)$ |
| $ 4, 4, 4, 4 $ | $12$ | $4$ | $( 1, 4, 2, 3)( 5, 8, 6, 7)( 9,11,10,12)(13,16,14,15)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $6$ | $2$ | $( 5, 6)( 7, 8)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $12$ | $2$ | $( 1, 8)( 2, 7)( 3, 6)( 4, 5)( 9,16)(10,15)(11,13)(12,14)$ |
| $ 6, 3, 3, 2, 1, 1 $ | $64$ | $6$ | $( 3, 6, 8)( 4, 5, 7)( 9,14,12,10,13,11)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $24$ | $2$ | $( 1,15)( 2,16)( 3, 9)( 4,10)( 5,12)( 6,11)( 7,14)( 8,13)$ |
| $ 8, 8 $ | $48$ | $8$ | $( 1,14, 5,10, 2,13, 6, 9)( 3,12, 8,15, 4,11, 7,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $24$ | $4$ | $( 1,15)( 2,16)( 3,10, 4, 9)( 5,11)( 6,12)( 7,14, 8,13)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $24$ | $2$ | $( 3, 7)( 4, 8)( 9,13)(10,14)(11,12)(15,16)$ |
| $ 4, 4, 4, 4 $ | $48$ | $4$ | $( 1, 4, 6, 7)( 2, 3, 5, 8)( 9,15,13,12)(10,16,14,11)$ |
| $ 4, 4, 2, 2, 1, 1, 1, 1 $ | $24$ | $4$ | $( 3, 8, 4, 7)( 5, 6)( 9,13,10,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $8$ | $2$ | $( 1,15)( 2,16)( 3,14)( 4,13)( 5,12)( 6,11)( 7, 9)( 8,10)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $24$ | $4$ | $( 1,14)( 2,13)( 3,16)( 4,15)( 5,10, 6, 9)( 7,12, 8,11)$ |
| $ 6, 6, 2, 2 $ | $64$ | $6$ | $( 1,15)( 2,16)( 3,11, 8,14, 6,10)( 4,12, 7,13, 5, 9)$ |
Group invariants
| Order: | $768=2^{8} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [768, 1088551] |
| Character table: Data not available. |