Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $1048$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,6,16,3,7,14)(2,5,15,4,8,13)(9,12)(10,11), (1,8,15,2,7,16)(3,6,13)(4,5,14)(9,10), (1,16,8,12)(2,15,7,11)(3,13,5,10)(4,14,6,9) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_2^2$ x 7 6: $S_3$ 8: $C_2^3$ 12: $D_{6}$ x 3 24: $S_4$, $S_3 \times C_2^2$ 48: $S_4\times C_2$ x 3 96: 12T48 192: $V_4^2:(S_3\times C_2)$ 384: 12T136 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $S_4$
Degree 8: $S_4\times C_2$
Low degree siblings
16T1048, 16T1054 x 2, 32T34673 x 2, 32T34674, 32T34675, 32T34689, 32T34690, 32T34787, 32T35040Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 4, 4, 4, 4 $ | $12$ | $4$ | $( 1,12, 2,11)( 3, 9, 4,10)( 5,14, 6,13)( 7,15, 8,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $12$ | $2$ | $( 1, 8)( 2, 7)( 3, 5)( 4, 6)( 9,14)(10,13)(11,15)(12,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $6$ | $2$ | $( 5, 6)( 7, 8)(13,14)(15,16)$ |
| $ 3, 3, 3, 3, 1, 1, 1, 1 $ | $32$ | $3$ | $( 5,14, 9)( 6,13,10)( 7,15,11)( 8,16,12)$ |
| $ 6, 6, 2, 2 $ | $32$ | $6$ | $( 1, 2)( 3, 4)( 5,13, 9, 6,14,10)( 7,16,11, 8,15,12)$ |
| $ 6, 6, 2, 2 $ | $64$ | $6$ | $( 1, 6,16, 3, 7,14)( 2, 5,15, 4, 8,13)( 9,12)(10,11)$ |
| $ 4, 4, 4, 4 $ | $12$ | $4$ | $( 1,13, 2,14)( 3,15, 4,16)( 5,11, 6,12)( 7, 9, 8,10)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $12$ | $2$ | $( 1, 5)( 2, 6)( 3, 8)( 4, 7)( 9,16)(10,15)(11,13)(12,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 4)( 2, 3)( 5, 7)( 6, 8)( 9,11)(10,12)(13,16)(14,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,12)(10,11)(13,16)(14,15)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $8$ | $2$ | $( 3, 4)( 7, 8)(11,12)(15,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $24$ | $4$ | $( 1,12)( 2,11)( 3,10)( 4, 9)( 5,14, 6,13)( 7,16, 8,15)$ |
| $ 6, 3, 3, 2, 1, 1 $ | $64$ | $6$ | $( 3, 4)( 5,14, 9)( 6,13,10)( 7,16,11, 8,15,12)$ |
| $ 12, 4 $ | $64$ | $12$ | $( 1, 6,16, 4, 7,13, 2, 5,15, 3, 8,14)( 9,12,10,11)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $24$ | $4$ | $( 1,13, 2,14)( 3,16, 4,15)( 5,11)( 6,12)( 7,10)( 8, 9)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 4, 2, 3)( 5, 7, 6, 8)( 9,11,10,12)(13,16,14,15)$ |
| $ 4, 4, 2, 2, 1, 1, 1, 1 $ | $24$ | $4$ | $( 3, 4)( 7, 8)( 9,13,10,14)(11,15,12,16)$ |
| $ 4, 4, 4, 4 $ | $48$ | $4$ | $( 1,12, 7,16)( 2,11, 8,15)( 3,10, 6,13)( 4, 9, 5,14)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $24$ | $2$ | $( 3, 4)( 5, 6)( 9,14)(10,13)(11,16)(12,15)$ |
| $ 4, 4, 4, 4 $ | $48$ | $4$ | $( 1, 6,16,10)( 2, 5,15, 9)( 3, 8,14,12)( 4, 7,13,11)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $24$ | $4$ | $( 1,13)( 2,14)( 3,16)( 4,15)( 5, 8, 6, 7)( 9,11,10,12)$ |
| $ 4, 4, 4, 4 $ | $24$ | $4$ | $( 1, 4, 2, 3)( 5,11, 6,12)( 7,10, 8, 9)(13,15,14,16)$ |
| $ 4, 4, 1, 1, 1, 1, 1, 1, 1, 1 $ | $12$ | $4$ | $( 9,13,10,14)(11,16,12,15)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $12$ | $4$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,14,10,13)(11,15,12,16)$ |
| $ 8, 8 $ | $48$ | $8$ | $( 1,12, 8,16, 2,11, 7,15)( 3, 9, 5,14, 4,10, 6,13)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $24$ | $2$ | $( 1, 8)( 2, 7)( 3, 5)( 4, 6)( 9,10)(11,12)$ |
| $ 8, 8 $ | $48$ | $8$ | $( 1, 6,16, 9, 2, 5,15,10)( 3, 7,14,12, 4, 8,13,11)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $24$ | $2$ | $( 1,13)( 2,14)( 3,15)( 4,16)( 5, 8)( 6, 7)( 9,11)(10,12)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $24$ | $4$ | $( 1,14, 2,13)( 3,16, 4,15)( 5, 7)( 6, 8)( 9,11)(10,12)$ |
Group invariants
| Order: | $768=2^{8} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [768, 1088563] |
| Character table: Data not available. |