Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $104$ | |
| Group : | $C_2^3.C_8$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $3$ | |
| Generators: | (1,16,9,7,4,14,12,5,2,15,10,8,3,13,11,6), (1,14,10,5,4,15,11,8,2,13,9,6,3,16,12,7) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 2, $C_2^2$ 8: $D_{4}$ x 2, $C_8$ x 2, $C_4\times C_2$ 16: $C_8:C_2$, $C_2^2:C_4$, $C_8\times C_2$ 32: $C_2^2 : C_8$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $C_4$
Degree 8: $C_8$
Low degree siblings
32T107, 32T108Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 5, 6)( 7, 8)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 4, 4, 4, 4 $ | $1$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,11,10,12)(13,15,14,16)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,12,10,11)(13,16,14,15)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 3, 2, 4)( 5, 8, 6, 7)( 9,11,10,12)(13,16,14,15)$ |
| $ 4, 4, 4, 4 $ | $1$ | $4$ | $( 1, 4, 2, 3)( 5, 8, 6, 7)( 9,12,10,11)(13,16,14,15)$ |
| $ 16 $ | $4$ | $16$ | $( 1, 5,11,14, 3, 7,10,16, 2, 6,12,13, 4, 8, 9,15)$ |
| $ 16 $ | $4$ | $16$ | $( 1, 5,11,13, 3, 7,10,15, 2, 6,12,14, 4, 8, 9,16)$ |
| $ 16 $ | $4$ | $16$ | $( 1, 7,11,15, 3, 6,10,14, 2, 8,12,16, 4, 5, 9,13)$ |
| $ 16 $ | $4$ | $16$ | $( 1, 7,11,16, 3, 6,10,13, 2, 8,12,15, 4, 5, 9,14)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 9, 3,11, 2,10, 4,12)( 5,15, 7,14, 6,16, 8,13)$ |
| $ 8, 8 $ | $2$ | $8$ | $( 1, 9, 4,12, 2,10, 3,11)( 5,15, 8,13, 6,16, 7,14)$ |
| $ 8, 8 $ | $2$ | $8$ | $( 1, 9, 4,12, 2,10, 3,11)( 5,16, 8,14, 6,15, 7,13)$ |
| $ 8, 8 $ | $2$ | $8$ | $( 1,11, 3,10, 2,12, 4, 9)( 5,13, 7,15, 6,14, 8,16)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1,11, 4, 9, 2,12, 3,10)( 5,13, 8,16, 6,14, 7,15)$ |
| $ 8, 8 $ | $2$ | $8$ | $( 1,11, 3,10, 2,12, 4, 9)( 5,14, 7,16, 6,13, 8,15)$ |
| $ 16 $ | $4$ | $16$ | $( 1,13,10, 6, 4,16,11, 7, 2,14, 9, 5, 3,15,12, 8)$ |
| $ 16 $ | $4$ | $16$ | $( 1,13, 9, 6, 4,16,12, 7, 2,14,10, 5, 3,15,11, 8)$ |
| $ 16 $ | $4$ | $16$ | $( 1,15,10, 8, 4,13,11, 6, 2,16, 9, 7, 3,14,12, 5)$ |
| $ 16 $ | $4$ | $16$ | $( 1,15, 9, 8, 4,13,12, 6, 2,16,10, 7, 3,14,11, 5)$ |
Group invariants
| Order: | $64=2^{6}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [64, 30] |
| Character table: Data not available. |