Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $1027$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2)(3,16,5,4,15,6)(7,14,9,8,13,10)(11,12), (1,9,3,14,16,11,2,10,4,13,15,12)(5,8,6,7) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ 4: $C_4$ 6: $S_3$, $C_6$ 12: $C_{12}$, $C_3 : C_4$ 18: $S_3\times C_3$ 36: $C_3\times (C_3 : C_4)$ 288: $A_4\wr C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $C_4$
Degree 8: $A_4\wr C_2$
Low degree siblings
12T159, 24T1487, 24T1488, 36T719, 36T724, 36T946, 36T947Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $6$ | $2$ | $( 7,13)( 8,14)( 9,11)(10,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $9$ | $2$ | $( 1, 4)( 2, 3)( 5,15)( 6,16)( 7,13)( 8,14)( 9,11)(10,12)$ |
| $ 3, 3, 3, 3, 1, 1, 1, 1 $ | $32$ | $3$ | $( 3, 5,15)( 4, 6,16)( 9,11,13)(10,12,14)$ |
| $ 6, 6, 2, 2 $ | $32$ | $6$ | $( 1, 2)( 3,16, 5, 4,15, 6)( 7,14, 9, 8,13,10)(11,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7,10)( 8, 9)(11,14)(12,13)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $9$ | $2$ | $( 1, 3)( 2, 4)( 5,16)( 6,15)( 7,10)( 8, 9)(11,14)(12,13)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $8$ | $3$ | $( 9,13,11)(10,14,12)$ |
| $ 3, 3, 2, 2, 2, 2, 1, 1 $ | $24$ | $6$ | $( 1, 4)( 2, 3)( 5,15)( 6,16)( 9,13,11)(10,14,12)$ |
| $ 3, 3, 3, 3, 1, 1, 1, 1 $ | $16$ | $3$ | $( 3,15, 5)( 4,16, 6)( 9,11,13)(10,12,14)$ |
| $ 6, 6, 2, 2 $ | $16$ | $6$ | $( 1, 2)( 3,16, 5, 4,15, 6)( 7,14,11, 8,13,12)( 9,10)$ |
| $ 6, 2, 2, 2, 2, 2 $ | $8$ | $6$ | $( 1, 2)( 3, 4)( 5, 6)( 7,10,11, 8, 9,12)(13,14)(15,16)$ |
| $ 6, 2, 2, 2, 2, 2 $ | $24$ | $6$ | $( 1, 3)( 2, 4)( 5,16)( 6,15)( 7,10,11, 8, 9,12)(13,14)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $8$ | $3$ | $( 9,11,13)(10,12,14)$ |
| $ 3, 3, 2, 2, 2, 2, 1, 1 $ | $24$ | $6$ | $( 1, 4)( 2, 3)( 5,15)( 6,16)( 9,11,13)(10,12,14)$ |
| $ 3, 3, 3, 3, 1, 1, 1, 1 $ | $16$ | $3$ | $( 3, 5,15)( 4, 6,16)( 9,13,11)(10,14,12)$ |
| $ 6, 2, 2, 2, 2, 2 $ | $24$ | $6$ | $( 1, 2)( 3,16, 5, 4,15, 6)( 7,14)( 8,13)( 9,12)(10,11)$ |
| $ 6, 2, 2, 2, 2, 2 $ | $8$ | $6$ | $( 1, 2)( 3,16, 5, 4,15, 6)( 7, 8)( 9,10)(11,12)(13,14)$ |
| $ 6, 6, 2, 2 $ | $16$ | $6$ | $( 1, 2)( 3, 6,15, 4, 5,16)( 7,12,13, 8,11,14)( 9,10)$ |
| $ 12, 4 $ | $48$ | $12$ | $( 1, 9, 3,14,16,11, 2,10, 4,13,15,12)( 5, 8, 6, 7)$ |
| $ 12, 4 $ | $48$ | $12$ | $( 1, 8, 3, 9,16,12, 2, 7, 4,10,15,11)( 5,13, 6,14)$ |
| $ 12, 4 $ | $48$ | $12$ | $( 1,13,15,10, 4,11, 2,14,16, 9, 3,12)( 5, 8, 6, 7)$ |
| $ 12, 4 $ | $48$ | $12$ | $( 1,10,15, 7, 4,12, 2, 9,16, 8, 3,11)( 5,13, 6,14)$ |
| $ 4, 4, 4, 4 $ | $12$ | $4$ | $( 1,11, 2,12)( 3,10, 4, 9)( 5, 8, 6, 7)(13,15,14,16)$ |
| $ 4, 4, 4, 4 $ | $36$ | $4$ | $( 1, 9, 3,12)( 2,10, 4,11)( 5,14,16, 7)( 6,13,15, 8)$ |
| $ 4, 4, 4, 4 $ | $12$ | $4$ | $( 1,12, 2,11)( 3, 7, 4, 8)( 5,13, 6,14)( 9,16,10,15)$ |
| $ 4, 4, 4, 4 $ | $36$ | $4$ | $( 1,10,15,11)( 2, 9,16,12)( 3,13, 6, 8)( 4,14, 5, 7)$ |
Group invariants
| Order: | $576=2^{6} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [576, 8278] |
| Character table: Data not available. |