Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $1022$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $6$ | |
| Generators: | (1,15,8,14)(2,16,7,13)(3,10,5,12)(4,9,6,11), (3,4)(7,8)(9,13)(10,14)(11,12), (1,14,6,10,2,13,5,9)(3,15,7,11,4,16,8,12) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_2^2$ x 7 8: $D_{4}$ x 6, $C_2^3$ 16: $D_4\times C_2$ x 3 32: $C_2^2 \wr C_2$ 64: $(((C_4 \times C_2): C_2):C_2):C_2$ 128: $C_2 \wr C_2\wr C_2$ 256: 16T659 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Degree 8: $C_2 \wr C_2\wr C_2$
Low degree siblings
16T1022 x 3, 32T11131 x 2, 32T11132 x 2, 32T11133 x 2, 32T11134 x 2, 32T11135 x 2, 32T11136 x 2, 32T11137 x 2, 32T21590 x 2, 32T21591, 32T21592, 32T21637, 32T21737, 32T21962, 32T21987Siblings are shown with degree $\leq 47$
A number field with this Galois group has exactly one arithmetically equivalent field.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $16$ | $2$ | $( 1, 8)( 2, 7)( 3, 5)( 4, 6)( 9,11)(10,12)(13,16)(14,15)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 6, 2, 5)( 3, 7, 4, 8)( 9,14,10,13)(11,16,12,15)$ |
| $ 4, 4, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $4$ | $( 9,13,10,14)(11,15,12,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $4$ | $4$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,14,10,13)(11,16,12,15)$ |
| $ 4, 4, 4, 4 $ | $64$ | $4$ | $( 1,15, 8,14)( 2,16, 7,13)( 3,10, 5,12)( 4, 9, 6,11)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $16$ | $2$ | $( 3, 7)( 4, 8)( 5, 6)(11,16)(12,15)(13,14)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 8, 6, 3, 2, 7, 5, 4)( 9,11,13,15,10,12,14,16)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 7, 6, 4, 2, 8, 5, 3)( 9,12,13,16,10,11,14,15)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1, 8, 6, 3, 2, 7, 5, 4)( 9,12,13,16,10,11,14,15)$ |
| $ 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $16$ | $2$ | $( 3, 4)( 7, 8)(11,15)(12,16)(13,14)$ |
| $ 8, 4, 4 $ | $32$ | $8$ | $( 1, 8, 2, 7)( 3, 6, 4, 5)( 9,11,14,16,10,12,13,15)$ |
| $ 4, 4, 2, 2, 2, 1, 1 $ | $16$ | $4$ | $( 1, 6, 2, 5)( 3, 8, 4, 7)( 9,14)(10,13)(15,16)$ |
| $ 16 $ | $32$ | $16$ | $( 1,15, 4,10, 5,12, 7,14, 2,16, 3, 9, 6,11, 8,13)$ |
| $ 16 $ | $32$ | $16$ | $( 1,16, 3,10, 5,11, 8,14, 2,15, 4, 9, 6,12, 7,13)$ |
| $ 8, 2, 2, 2, 1, 1 $ | $32$ | $8$ | $( 3, 8)( 4, 7)( 5, 6)( 9,15,13,12,10,16,14,11)$ |
| $ 4, 4, 4, 4 $ | $16$ | $4$ | $( 1,15, 2,16)( 3,14, 4,13)( 5,11, 6,12)( 7, 9, 8,10)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $16$ | $2$ | $( 1,16)( 2,15)( 3,13)( 4,14)( 5,12)( 6,11)( 7,10)( 8, 9)$ |
| $ 8, 8 $ | $32$ | $8$ | $( 1,14, 6,10, 2,13, 5, 9)( 3,15, 7,11, 4,16, 8,12)$ |
| $ 4, 4, 2, 2, 1, 1, 1, 1 $ | $16$ | $4$ | $( 3, 4)( 7, 8)( 9,12,10,11)(13,15,14,16)$ |
| $ 4, 4, 4, 4 $ | $16$ | $4$ | $( 1, 4, 2, 3)( 5, 8, 6, 7)( 9,14,10,13)(11,15,12,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $32$ | $2$ | $( 3, 7)( 4, 8)( 5, 6)( 9,11)(10,12)(13,16)(14,15)$ |
| $ 8, 1, 1, 1, 1, 1, 1, 1, 1 $ | $8$ | $8$ | $( 1, 8, 6, 3, 2, 7, 5, 4)$ |
| $ 8, 2, 2, 2, 2 $ | $8$ | $8$ | $( 1, 7, 6, 4, 2, 8, 5, 3)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 8, 4, 4 $ | $8$ | $8$ | $( 1, 4, 5, 7, 2, 3, 6, 8)( 9,13,10,14)(11,15,12,16)$ |
| $ 8, 4, 4 $ | $8$ | $8$ | $( 1, 4, 5, 7, 2, 3, 6, 8)( 9,14,10,13)(11,16,12,15)$ |
| $ 4, 4, 4, 2, 2 $ | $64$ | $4$ | $( 1,15)( 2,16)( 3,13, 7,10)( 4,14, 8, 9)( 5,11, 6,12)$ |
Group invariants
| Order: | $512=2^{9}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [512, 60813] |
| Character table: Data not available. |