Properties

Label 15T95
Order \(1296000\)
n \(15\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $15$
Transitive number $t$ :  $95$
CHM label :  $[A(5)^{3}:2]3$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (3,6)(9,12), (1,4)(6,9)(11,14), (1,6,11)(2,7,12)(3,8,13)(4,9,14)(5,10,15), (3,6,9,12,15)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
3:  $C_3$
6:  $C_6$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 3: $C_3$

Degree 5: None

Low degree siblings

18T933, 30T2088, 30T2090, 36T39370, 45T1884

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 53 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $1296000=2^{7} \cdot 3^{4} \cdot 5^{3}$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.