Properties

Label 15T90
Order \(466560\)
n \(15\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $15$
Transitive number $t$ :  $90$
CHM label :  $[S(3)^{5}]A(5)=S(3)wrA(5)$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,4,7,10,13)(2,5,8,11,14)(3,6,9,12,15), (5,10,15), (5,10), (1,13)(2,14)(3,6)(4,7)(8,11)(9,12)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
60:  $A_5$
120:  $A_5\times C_2$
960:  $C_2^4 : A_5$
1920:  $C_2 \wr A_5$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 3: None

Degree 5: $A_5$

Low degree siblings

30T1811, 30T1820, 30T1823, 30T1827, 45T1509

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 72 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $466560=2^{7} \cdot 3^{6} \cdot 5$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.