Properties

Label 15T87
Order \(155520\)
n \(15\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $15$
Transitive number $t$ :  $87$
CHM label :  $[S(3)^{5}]F(5)=S(3)wrF(5)$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,4,7,10,13)(2,5,8,11,14)(3,6,9,12,15), (5,10,15), (5,10), (1,7,4,13)(2,14,8,11)(3,6,12,9)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_4$ x 2, $C_2^2$
8:  $C_4\times C_2$
20:  $F_5$
40:  $F_{5}\times C_2$
320:  $(C_2^4 : C_5):C_4$
640:  $((C_2^4 : C_5):C_4)\times C_2$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 3: None

Degree 5: $F_5$

Low degree siblings

30T1538, 30T1540, 30T1549, 30T1550, 30T1557, 30T1558, 30T1559

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 63 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $155520=2^{7} \cdot 3^{5} \cdot 5$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.