Properties

Label 15T86
Order \(77760\)
n \(15\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $15$
Transitive number $t$ :  $86$
CHM label :  $[S(3)^{5}]D(5)=S(3)wrD(5)$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,4)(2,8)(3,12)(6,9)(7,13)(11,14), (1,4,7,10,13)(2,5,8,11,14)(3,6,9,12,15), (5,10,15), (5,10)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
10:  $D_{5}$
20:  $D_{10}$
160:  $(C_2^4 : C_5) : C_2$
320:  $C_2\times (C_2^4 : D_5)$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 3: None

Degree 5: $D_{5}$

Low degree siblings

30T1344, 30T1345 x 2, 30T1346, 30T1347, 30T1348 x 2, 30T1355, 30T1356, 30T1357, 30T1362 x 2, 30T1364, 30T1365 x 2, 30T1367 x 2, 45T935 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 72 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $77760=2^{6} \cdot 3^{5} \cdot 5$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.