Properties

Label 15T81
Order \(38880\)
n \(15\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $15$
Transitive number $t$ :  $81$
CHM label :  $[S(3)^{5}]5=S(3)wr5$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,4,7,10,13)(2,5,8,11,14)(3,6,9,12,15), (5,10,15), (5,10)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
5:  $C_5$
10:  $C_{10}$
80:  $C_2^4 : C_5$
160:  $C_2 \times (C_2^4 : C_5)$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 3: None

Degree 5: $C_5$

Low degree siblings

30T1117, 30T1120, 30T1121 x 4, 30T1122 x 2, 30T1123 x 4, 30T1127 x 4, 30T1128 x 4, 30T1133 x 4, 30T1146 x 2, 30T1147, 30T1149 x 2, 30T1151 x 4, 45T778 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 63 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $38880=2^{5} \cdot 3^{5} \cdot 5$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.