Group action invariants
| Degree $n$ : | $15$ | |
| Transitive number $t$ : | $79$ | |
| CHM label : | $1/2[S(3)^{5}]D(5)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,4,7,10,13)(2,5,8,11,14)(3,6,9,12,15), (5,10,15), (1,4)(2,8)(3,12)(5,10)(6,9)(7,13)(11,14), (1,11)(4,14) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 10: $D_{5}$ 160: $(C_2^4 : C_5) : C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: None
Degree 5: $D_{5}$
Low degree siblings
30T1134, 30T1135, 30T1136, 30T1139 x 2, 30T1141 x 2, 30T1150 x 2, 45T780 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $10$ | $3$ | $( 5,15,10)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $20$ | $3$ | $( 3,13, 8)( 5,15,10)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $20$ | $3$ | $( 2,12, 7)( 3,13, 8)$ |
| $ 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $40$ | $3$ | $( 2,12, 7)( 3,13, 8)( 5,15,10)$ |
| $ 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $40$ | $3$ | $( 1,11, 6)( 2,12, 7)( 5,15,10)$ |
| $ 3, 3, 3, 3, 1, 1, 1 $ | $80$ | $3$ | $( 1,11, 6)( 2,12, 7)( 3,13, 8)( 5,15,10)$ |
| $ 3, 3, 3, 3, 3 $ | $32$ | $3$ | $( 1,11, 6)( 2,12, 7)( 3,13, 8)( 4,14, 9)( 5,15,10)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1 $ | $405$ | $2$ | $( 6,11)( 7,12)( 9,14)(10,15)$ |
| $ 3, 2, 2, 2, 2, 1, 1, 1, 1 $ | $810$ | $6$ | $( 3,13, 8)( 6,11)( 7,12)( 9,14)(10,15)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $45$ | $2$ | $( 6,11)( 8,13)$ |
| $ 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $180$ | $6$ | $( 5,15,10)( 6,11)( 8,13)$ |
| $ 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $90$ | $6$ | $( 2,12, 7)( 6,11)( 8,13)$ |
| $ 3, 3, 2, 2, 1, 1, 1, 1, 1 $ | $360$ | $6$ | $( 2,12, 7)( 5,15,10)( 6,11)( 8,13)$ |
| $ 3, 3, 2, 2, 1, 1, 1, 1, 1 $ | $180$ | $6$ | $( 4,14, 9)( 5,15,10)( 6,11)( 8,13)$ |
| $ 3, 3, 3, 2, 2, 1, 1 $ | $360$ | $6$ | $( 2,12, 7)( 4,14, 9)( 5,15,10)( 6,11)( 8,13)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $45$ | $2$ | $( 9,14)(10,15)$ |
| $ 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $180$ | $6$ | $( 3,13, 8)( 9,14)(10,15)$ |
| $ 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $90$ | $6$ | $( 2,12, 7)( 9,14)(10,15)$ |
| $ 3, 3, 2, 2, 1, 1, 1, 1, 1 $ | $360$ | $6$ | $( 2,12, 7)( 3,13, 8)( 9,14)(10,15)$ |
| $ 3, 3, 2, 2, 1, 1, 1, 1, 1 $ | $180$ | $6$ | $( 1,11, 6)( 3,13, 8)( 9,14)(10,15)$ |
| $ 3, 3, 3, 2, 2, 1, 1 $ | $360$ | $6$ | $( 1,11, 6)( 2,12, 7)( 3,13, 8)( 9,14)(10,15)$ |
| $ 5, 5, 5 $ | $2592$ | $5$ | $( 1, 4, 7,10,13)( 2, 5, 8,11,14)( 3, 6, 9,12,15)$ |
| $ 15 $ | $2592$ | $15$ | $( 1, 4, 7, 5, 8,11,14, 2,15, 3, 6, 9,12,10,13)$ |
| $ 15 $ | $2592$ | $15$ | $( 1, 4, 7,15, 3, 6, 9,12, 5, 8,11,14, 2,10,13)$ |
| $ 5, 5, 5 $ | $2592$ | $5$ | $( 1, 7,13, 4,10)( 2, 8,14, 5,11)( 3, 9,15, 6,12)$ |
| $ 15 $ | $2592$ | $15$ | $( 1, 7,13, 4, 5,11, 2, 8,14,15, 6,12, 3, 9,10)$ |
| $ 15 $ | $2592$ | $15$ | $( 1, 7,13, 4,15, 6,12, 3, 9, 5,11, 2, 8,14,10)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 1 $ | $540$ | $2$ | $( 1, 4)( 2, 8)( 3,12)( 6, 9)( 7,13)(10,15)(11,14)$ |
| $ 6, 2, 2, 2, 2, 1 $ | $1080$ | $6$ | $( 1, 4)( 2, 3,12,13, 7, 8)( 6, 9)(10,15)(11,14)$ |
| $ 6, 2, 2, 2, 2, 1 $ | $1080$ | $6$ | $( 1, 4,11,14, 6, 9)( 2, 8)( 3,12)( 7,13)(10,15)$ |
| $ 6, 6, 2, 1 $ | $2160$ | $6$ | $( 1, 4,11,14, 6, 9)( 2, 3,12,13, 7, 8)(10,15)$ |
| $ 4, 2, 2, 2, 2, 1, 1, 1 $ | $540$ | $4$ | $( 1, 4)( 2, 8)( 3, 7,13,12)( 6,14)( 9,11)$ |
| $ 4, 3, 2, 2, 2, 2 $ | $540$ | $12$ | $( 1, 4)( 2, 8)( 3, 7,13,12)( 5,15,10)( 6,14)( 9,11)$ |
| $ 4, 3, 2, 2, 2, 2 $ | $540$ | $12$ | $( 1, 4)( 2, 8)( 3, 7,13,12)( 5,10,15)( 6,14)( 9,11)$ |
| $ 6, 4, 2, 1, 1, 1 $ | $1080$ | $12$ | $( 1, 4,11, 9, 6,14)( 2, 8)( 3, 7,13,12)$ |
| $ 6, 4, 3, 2 $ | $1080$ | $12$ | $( 1, 4,11, 9, 6,14)( 2, 8)( 3, 7,13,12)( 5,15,10)$ |
| $ 6, 4, 3, 2 $ | $1080$ | $12$ | $( 1, 4,11, 9, 6,14)( 2, 8)( 3, 7,13,12)( 5,10,15)$ |
| $ 6, 4, 2, 1, 1, 1 $ | $1080$ | $12$ | $( 1, 4)( 2,13,12, 3, 7, 8)( 6,14,11, 9)$ |
| $ 6, 4, 3, 2 $ | $1080$ | $12$ | $( 1, 4)( 2,13,12, 3, 7, 8)( 5,15,10)( 6,14,11, 9)$ |
| $ 6, 4, 3, 2 $ | $1080$ | $12$ | $( 1, 4)( 2,13,12, 3, 7, 8)( 5,10,15)( 6,14,11, 9)$ |
| $ 4, 2, 2, 2, 2, 1, 1, 1 $ | $540$ | $4$ | $( 1, 4)( 2, 8)( 3, 7)( 6,14,11, 9)(12,13)$ |
| $ 4, 3, 2, 2, 2, 2 $ | $540$ | $12$ | $( 1, 4)( 2, 8)( 3, 7)( 5,15,10)( 6,14,11, 9)(12,13)$ |
| $ 4, 3, 2, 2, 2, 2 $ | $540$ | $12$ | $( 1, 4)( 2, 8)( 3, 7)( 5,10,15)( 6,14,11, 9)(12,13)$ |
| $ 4, 4, 2, 2, 2, 1 $ | $4860$ | $4$ | $( 1, 4)( 2,13, 7, 8)( 3,12)( 6, 9,11,14)(10,15)$ |
Group invariants
| Order: | $38880=2^{5} \cdot 3^{5} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | Data not available |
| Character table: Data not available. |