Properties

Label 15T78
Order \(29160\)
n \(15\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $15$
Transitive number $t$ :  $78$
CHM label :  $[3^{5}]S(5)=3wrS(5)$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,4,7,10,13)(2,5,8,11,14)(3,6,9,12,15), (5,10,15), (1,4)(6,9)(11,14)
$|\Aut(F/K)|$:  $3$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
3:  $C_3$
6:  $C_6$
120:  $S_5$
360:  $S_5 \times C_3$
9720:  15T63

Resolvents shown for degrees $\leq 47$

Subfields

Degree 3: None

Degree 5: $S_5$

Low degree siblings

15T78, 30T1016 x 2, 30T1033 x 2, 30T1038 x 2, 45T696 x 2, 45T723

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 108 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $29160=2^{3} \cdot 3^{6} \cdot 5$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.