Group action invariants
| Degree $n$ : | $15$ | |
| Transitive number $t$ : | $77$ | |
| CHM label : | $1/2[3^{5}:2]S(5)$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,14)(2,7)(4,11)(5,10)(6,9)(8,13), (1,4,7,10,13)(2,5,8,11,14)(3,6,9,12,15), (5,10,15) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 6: $S_3$ 120: $S_5$ 360: $\GL(2,4):C_2$ 9720: 15T62 Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: None
Degree 5: $S_5$
Low degree siblings
15T77 x 5, 30T1020 x 6, 30T1024 x 2, 45T697 x 2, 45T714 x 6, 45T717 x 3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $10$ | $3$ | $( 5,10,15)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $20$ | $3$ | $( 3, 8,13)( 5,10,15)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $20$ | $3$ | $( 3, 8,13)( 5,15,10)$ |
| $ 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $20$ | $3$ | $( 1, 6,11)( 3, 8,13)( 5,10,15)$ |
| $ 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $60$ | $3$ | $( 1, 6,11)( 3, 8,13)( 5,15,10)$ |
| $ 3, 3, 3, 3, 1, 1, 1 $ | $10$ | $3$ | $( 1, 6,11)( 3, 8,13)( 4, 9,14)( 5,10,15)$ |
| $ 3, 3, 3, 3, 1, 1, 1 $ | $40$ | $3$ | $( 1, 6,11)( 3, 8,13)( 4, 9,14)( 5,15,10)$ |
| $ 3, 3, 3, 3, 1, 1, 1 $ | $30$ | $3$ | $( 1, 6,11)( 3,13, 8)( 4, 9,14)( 5,15,10)$ |
| $ 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 6,11)( 2, 7,12)( 3, 8,13)( 4, 9,14)( 5,10,15)$ |
| $ 3, 3, 3, 3, 3 $ | $10$ | $3$ | $( 1, 6,11)( 2, 7,12)( 3, 8,13)( 4, 9,14)( 5,15,10)$ |
| $ 3, 3, 3, 3, 3 $ | $20$ | $3$ | $( 1, 6,11)( 2, 7,12)( 3,13, 8)( 4, 9,14)( 5,15,10)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1 $ | $810$ | $2$ | $( 1,14)( 2, 7)( 4,11)( 5,10)( 6, 9)( 8,13)$ |
| $ 6, 2, 2, 2, 1, 1, 1 $ | $1620$ | $6$ | $( 1,14, 6, 9,11, 4)( 2, 7)( 5,10)( 8,13)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1 $ | $135$ | $2$ | $( 1, 4)( 2, 5)( 6, 9)( 7,10)(11,14)(12,15)$ |
| $ 6, 2, 2, 2, 1, 1, 1 $ | $540$ | $6$ | $( 1, 4)( 2,10, 7,15,12, 5)( 6, 9)(11,14)$ |
| $ 3, 2, 2, 2, 2, 2, 2 $ | $270$ | $6$ | $( 1, 4)( 2, 5)( 3, 8,13)( 6, 9)( 7,10)(11,14)(12,15)$ |
| $ 6, 3, 2, 2, 2 $ | $540$ | $6$ | $( 1, 4)( 2,10, 7,15,12, 5)( 3, 8,13)( 6, 9)(11,14)$ |
| $ 6, 3, 2, 2, 2 $ | $540$ | $6$ | $( 1, 4)( 2,15,12,10, 7, 5)( 3, 8,13)( 6, 9)(11,14)$ |
| $ 6, 6, 1, 1, 1 $ | $270$ | $6$ | $( 1, 4, 6, 9,11,14)( 2,10, 7,15,12, 5)$ |
| $ 6, 6, 1, 1, 1 $ | $270$ | $6$ | $( 1, 4, 6, 9,11,14)( 2,15,12,10, 7, 5)$ |
| $ 6, 6, 3 $ | $270$ | $6$ | $( 1, 4, 6, 9,11,14)( 2,10, 7,15,12, 5)( 3, 8,13)$ |
| $ 6, 6, 3 $ | $540$ | $6$ | $( 1, 4, 6, 9,11,14)( 2,15,12,10, 7, 5)( 3, 8,13)$ |
| $ 6, 6, 3 $ | $270$ | $6$ | $( 1, 4, 6, 9,11,14)( 2,10, 7,15,12, 5)( 3,13, 8)$ |
| $ 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $180$ | $3$ | $( 1, 4, 7)( 2,11,14)( 6, 9,12)$ |
| $ 3, 3, 3, 3, 1, 1, 1 $ | $360$ | $3$ | $( 1, 4, 7)( 2,11,14)( 5,10,15)( 6, 9,12)$ |
| $ 3, 3, 3, 3, 1, 1, 1 $ | $360$ | $3$ | $( 1, 4, 7)( 2,11,14)( 5,15,10)( 6, 9,12)$ |
| $ 3, 3, 3, 3, 3 $ | $360$ | $3$ | $( 1, 4, 7)( 2,11,14)( 3, 8,13)( 5,10,15)( 6, 9,12)$ |
| $ 3, 3, 3, 3, 3 $ | $180$ | $3$ | $( 1, 4, 7)( 2,11,14)( 3, 8,13)( 5,15,10)( 6, 9,12)$ |
| $ 3, 3, 3, 3, 3 $ | $180$ | $3$ | $( 1, 4, 7)( 2,11,14)( 3,13, 8)( 5,10,15)( 6, 9,12)$ |
| $ 9, 1, 1, 1, 1, 1, 1 $ | $360$ | $9$ | $( 1, 4, 7, 6, 9,12,11,14, 2)$ |
| $ 9, 3, 1, 1, 1 $ | $360$ | $9$ | $( 1, 4, 7, 6, 9,12,11,14, 2)( 5,10,15)$ |
| $ 9, 3, 1, 1, 1 $ | $360$ | $9$ | $( 1, 4, 7, 6, 9,12,11,14, 2)( 5,15,10)$ |
| $ 9, 3, 1, 1, 1 $ | $360$ | $9$ | $( 1, 4, 7, 6, 9,12,11,14, 2)( 3, 8,13)$ |
| $ 9, 3, 3 $ | $360$ | $9$ | $( 1, 4, 7, 6, 9,12,11,14, 2)( 3, 8,13)( 5,10,15)$ |
| $ 9, 3, 3 $ | $360$ | $9$ | $( 1, 4, 7, 6, 9,12,11,14, 2)( 3, 8,13)( 5,15,10)$ |
| $ 9, 3, 1, 1, 1 $ | $360$ | $9$ | $( 1, 4, 7, 6, 9,12,11,14, 2)( 3,13, 8)$ |
| $ 9, 3, 3 $ | $360$ | $9$ | $( 1, 4, 7, 6, 9,12,11,14, 2)( 3,13, 8)( 5,10,15)$ |
| $ 9, 3, 3 $ | $360$ | $9$ | $( 1, 4, 7, 6, 9,12,11,14, 2)( 3,13, 8)( 5,15,10)$ |
| $ 6, 3, 2, 2, 2 $ | $1620$ | $6$ | $( 1,14, 7,11, 4, 2)( 3,15)( 5,13)( 6, 9,12)( 8,10)$ |
| $ 6, 6, 3 $ | $1620$ | $6$ | $( 1,14, 7,11, 4, 2)( 3, 5,13,10, 8,15)( 6, 9,12)$ |
| $ 6, 6, 3 $ | $1620$ | $6$ | $( 1,14, 7,11, 4, 2)( 3,10, 8, 5,13,15)( 6, 9,12)$ |
| $ 4, 4, 4, 2, 1 $ | $2430$ | $4$ | $( 1,14, 7, 5)( 2,10,11, 4)( 6, 9,12,15)( 8,13)$ |
| $ 12, 2, 1 $ | $2430$ | $12$ | $( 1,14, 7,10,11, 4, 2,15, 6, 9,12, 5)( 8,13)$ |
| $ 12, 2, 1 $ | $2430$ | $12$ | $( 1,14, 7,15, 6, 9,12,10,11, 4, 2, 5)( 8,13)$ |
| $ 5, 5, 5 $ | $1944$ | $5$ | $( 1, 4, 7,10,13)( 2, 5, 8,11,14)( 3, 6, 9,12,15)$ |
| $ 15 $ | $1944$ | $15$ | $( 1, 4, 7,15, 3, 6, 9,12, 5, 8,11,14, 2,10,13)$ |
| $ 15 $ | $1944$ | $15$ | $( 1, 4, 7, 5, 8,11,14, 2,15, 3, 6, 9,12,10,13)$ |
Group invariants
| Order: | $29160=2^{3} \cdot 3^{6} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | Data not available |
| Character table: Data not available. |