Group action invariants
| Degree $n$ : | $15$ | |
| Transitive number $t$ : | $74$ | |
| CHM label : | $[1/2.F(5)^{3}]S(3)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,11)(2,7)(4,14)(5,10)(8,13), (1,7,4,13)(2,14,8,11), (1,6,11)(2,7,12)(3,8,13)(4,9,14)(5,10,15), (3,12)(6,9), (3,6,9,12,15) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 6: $S_3$ 12: $D_{6}$ 24: $S_4$ 48: $S_4\times C_2$ 96: 12T62 192: 12T95 Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $S_3$
Degree 5: None
Low degree siblings
30T976, 30T977, 30T981, 30T982, 30T983, 30T993, 30T996Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $12$ | $5$ | $( 3, 6, 9,12,15)$ |
| $ 5, 5, 1, 1, 1, 1, 1 $ | $48$ | $5$ | $( 2, 5, 8,11,14)( 3, 6, 9,12,15)$ |
| $ 5, 5, 5 $ | $32$ | $5$ | $( 1, 4, 7,10,13)( 2, 5, 8,11,14)( 3, 6, 9,12,15)$ |
| $ 5, 5, 5 $ | $32$ | $5$ | $( 1, 4, 7,10,13)( 2, 5, 8,11,14)( 3, 9,15, 6,12)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1 $ | $75$ | $2$ | $( 5,14)( 6,15)( 8,11)( 9,12)$ |
| $ 5, 2, 2, 2, 2, 1, 1 $ | $300$ | $10$ | $( 1, 4, 7,10,13)( 5,14)( 6,15)( 8,11)( 9,12)$ |
| $ 4, 4, 2, 2, 1, 1, 1 $ | $375$ | $4$ | $( 4,13)( 5, 8,14,11)( 6, 9,15,12)( 7,10)$ |
| $ 4, 4, 2, 2, 1, 1, 1 $ | $375$ | $4$ | $( 4,13)( 5,11,14, 8)( 6,12,15, 9)( 7,10)$ |
| $ 4, 4, 1, 1, 1, 1, 1, 1, 1 $ | $150$ | $4$ | $( 5, 8,14,11)( 6,12,15, 9)$ |
| $ 5, 4, 4, 1, 1 $ | $600$ | $20$ | $( 1, 4, 7,10,13)( 5, 8,14,11)( 6,12,15, 9)$ |
| $ 3, 3, 3, 3, 3 $ | $800$ | $3$ | $( 1,11, 6)( 2,12, 7)( 3,13, 8)( 4,14, 9)( 5,15,10)$ |
| $ 15 $ | $1600$ | $15$ | $( 1,11, 9, 4,14,12, 7, 2,15,10, 5, 3,13, 8, 6)$ |
| $ 15 $ | $1600$ | $15$ | $( 1,11,12, 7, 2, 3,13, 8, 9, 4,14,15,10, 5, 6)$ |
| $ 2, 2, 2, 2, 2, 1, 1, 1, 1, 1 $ | $60$ | $2$ | $( 1,11)( 2, 7)( 4,14)( 5,10)( 8,13)$ |
| $ 5, 2, 2, 2, 2, 2 $ | $120$ | $10$ | $( 1,11)( 2, 7)( 3, 6, 9,12,15)( 4,14)( 5,10)( 8,13)$ |
| $ 5, 2, 2, 2, 2, 2 $ | $120$ | $10$ | $( 1,11)( 2, 7)( 3, 9,15, 6,12)( 4,14)( 5,10)( 8,13)$ |
| $ 10, 1, 1, 1, 1, 1 $ | $240$ | $10$ | $( 1,14, 4, 2, 7, 5,10, 8,13,11)$ |
| $ 10, 5 $ | $480$ | $10$ | $( 1,14, 4, 2, 7, 5,10, 8,13,11)( 3, 6, 9,12,15)$ |
| $ 10, 5 $ | $480$ | $10$ | $( 1,14, 4, 2, 7, 5,10, 8,13,11)( 3, 9,15, 6,12)$ |
| $ 4, 4, 2, 2, 2, 1 $ | $1500$ | $4$ | $( 1, 8,13,11)( 2, 7)( 4, 5,10,14)( 6,15)( 9,12)$ |
| $ 8, 4, 2, 1 $ | $1500$ | $8$ | $( 1, 5, 7, 2,10, 8, 4,11)( 6, 9,15,12)(13,14)$ |
| $ 8, 4, 2, 1 $ | $1500$ | $8$ | $( 1,14,13, 5, 7, 2,10,11)( 4, 8)( 6,12,15, 9)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $15$ | $2$ | $( 6,15)( 9,12)$ |
| $ 5, 2, 2, 1, 1, 1, 1, 1, 1 $ | $120$ | $10$ | $( 2, 5, 8,11,14)( 6,15)( 9,12)$ |
| $ 5, 5, 2, 2, 1 $ | $240$ | $10$ | $( 1, 4, 7,10,13)( 2, 5, 8,11,14)( 6,15)( 9,12)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1 $ | $125$ | $2$ | $( 4,13)( 5,14)( 6,15)( 7,10)( 8,11)( 9,12)$ |
| $ 4, 4, 2, 2, 1, 1, 1 $ | $750$ | $4$ | $( 4,13)( 5, 8,14,11)( 6,12,15, 9)( 7,10)$ |
| $ 4, 4, 1, 1, 1, 1, 1, 1, 1 $ | $75$ | $4$ | $( 5, 8,14,11)( 6, 9,15,12)$ |
| $ 5, 4, 4, 1, 1 $ | $300$ | $20$ | $( 1, 4, 7,10,13)( 5, 8,14,11)( 6, 9,15,12)$ |
| $ 4, 4, 1, 1, 1, 1, 1, 1, 1 $ | $75$ | $4$ | $( 5,11,14, 8)( 6,12,15, 9)$ |
| $ 5, 4, 4, 1, 1 $ | $300$ | $20$ | $( 1, 4, 7,10,13)( 5,11,14, 8)( 6,12,15, 9)$ |
| $ 6, 6, 3 $ | $4000$ | $6$ | $( 1,11, 6,10, 5,15)( 2,12, 4,14, 9, 7)( 3,13, 8)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 1 $ | $300$ | $2$ | $( 1,11)( 2, 7)( 4,14)( 5,10)( 6,15)( 8,13)( 9,12)$ |
| $ 10, 2, 2, 1 $ | $1200$ | $10$ | $( 1,14, 4, 2, 7, 5,10, 8,13,11)( 6,15)( 9,12)$ |
| $ 4, 4, 2, 1, 1, 1, 1, 1 $ | $300$ | $4$ | $( 1, 8,13,11)( 2, 7)( 4, 5,10,14)$ |
| $ 5, 4, 4, 2 $ | $600$ | $20$ | $( 1, 8,13,11)( 2, 7)( 3, 6, 9,12,15)( 4, 5,10,14)$ |
| $ 5, 4, 4, 2 $ | $600$ | $20$ | $( 1, 8,13,11)( 2, 7)( 3, 9,15, 6,12)( 4, 5,10,14)$ |
| $ 8, 4, 2, 1 $ | $1500$ | $8$ | $( 1, 5, 7, 2,10, 8, 4,11)( 6,12,15, 9)(13,14)$ |
| $ 8, 4, 2, 1 $ | $1500$ | $8$ | $( 1,14,13, 5, 7, 2,10,11)( 4, 8)( 6, 9,15,12)$ |
Group invariants
| Order: | $24000=2^{6} \cdot 3 \cdot 5^{3}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | Data not available |
| Character table: Data not available. |