Group action invariants
| Degree $n$ : | $15$ | |
| Transitive number $t$ : | $68$ | |
| CHM label : | $[D(5)^{3}:2]S(3)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,11)(2,7)(4,14)(5,10)(8,13), (1,6,11)(2,7,12)(3,8,13)(4,9,14)(5,10,15), (3,12)(6,9), (1,7,4,13)(2,14,8,11)(3,6,12,9), (3,6,9,12,15) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 2, $C_2^2$ 6: $S_3$ 8: $C_4\times C_2$ 12: $D_{6}$ 24: $S_4$, $S_3 \times C_4$ 48: $S_4\times C_2$ 96: 12T53 Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $S_3$
Degree 5: None
Low degree siblings
20T454, 30T772, 30T779, 30T780, 30T784, 30T798, 30T799, 30T804, 30T805, 30T806, 40T10422, 40T10423, 40T10424Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $12$ | $5$ | $( 3, 6, 9,12,15)$ |
| $ 5, 5, 1, 1, 1, 1, 1 $ | $24$ | $5$ | $( 2, 5, 8,11,14)( 3, 6, 9,12,15)$ |
| $ 5, 5, 1, 1, 1, 1, 1 $ | $24$ | $5$ | $( 2, 5, 8,11,14)( 3, 9,15, 6,12)$ |
| $ 5, 5, 5 $ | $16$ | $5$ | $( 1, 4, 7,10,13)( 2, 5, 8,11,14)( 3, 6, 9,12,15)$ |
| $ 5, 5, 5 $ | $48$ | $5$ | $( 1, 4, 7,10,13)( 2, 5, 8,11,14)( 3, 9,15, 6,12)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1 $ | $75$ | $2$ | $( 5,14)( 6,15)( 8,11)( 9,12)$ |
| $ 5, 2, 2, 2, 2, 1, 1 $ | $300$ | $10$ | $( 1, 4, 7,10,13)( 5,14)( 6,15)( 8,11)( 9,12)$ |
| $ 3, 3, 3, 3, 3 $ | $200$ | $3$ | $( 1,11, 6)( 2,12, 7)( 3,13, 8)( 4,14, 9)( 5,15,10)$ |
| $ 15 $ | $800$ | $15$ | $( 1,11, 9, 4,14,12, 7, 2,15,10, 5, 3,13, 8, 6)$ |
| $ 2, 2, 2, 2, 2, 1, 1, 1, 1, 1 $ | $30$ | $2$ | $( 1,11)( 2, 7)( 4,14)( 5,10)( 8,13)$ |
| $ 5, 2, 2, 2, 2, 2 $ | $120$ | $10$ | $( 1,11)( 2, 7)( 3, 6, 9,12,15)( 4,14)( 5,10)( 8,13)$ |
| $ 10, 1, 1, 1, 1, 1 $ | $120$ | $10$ | $( 1,14, 4, 2, 7, 5,10, 8,13,11)$ |
| $ 10, 5 $ | $240$ | $10$ | $( 1,14, 4, 2, 7, 5,10, 8,13,11)( 3, 6, 9,12,15)$ |
| $ 10, 5 $ | $240$ | $10$ | $( 1,14, 4, 2, 7, 5,10, 8,13,11)( 3, 9,15, 6,12)$ |
| $ 4, 4, 2, 2, 2, 1 $ | $750$ | $4$ | $( 1, 8,13,11)( 2, 7)( 4, 5,10,14)( 6,15)( 9,12)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $15$ | $2$ | $( 6,15)( 9,12)$ |
| $ 5, 2, 2, 1, 1, 1, 1, 1, 1 $ | $120$ | $10$ | $( 2, 5, 8,11,14)( 6,15)( 9,12)$ |
| $ 5, 5, 2, 2, 1 $ | $120$ | $10$ | $( 1, 4, 7,10,13)( 2, 5, 8,11,14)( 6,15)( 9,12)$ |
| $ 5, 5, 2, 2, 1 $ | $120$ | $10$ | $( 1, 4, 7,10,13)( 2, 8,14, 5,11)( 6,15)( 9,12)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1 $ | $125$ | $2$ | $( 4,13)( 5,14)( 6,15)( 7,10)( 8,11)( 9,12)$ |
| $ 6, 6, 3 $ | $1000$ | $6$ | $( 1,11, 6,10, 5,15)( 2,12, 4,14, 9, 7)( 3,13, 8)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 1 $ | $150$ | $2$ | $( 1,11)( 2, 7)( 4,14)( 5,10)( 6,15)( 8,13)( 9,12)$ |
| $ 10, 2, 2, 1 $ | $600$ | $10$ | $( 1,14, 4, 2, 7, 5,10, 8,13,11)( 6,15)( 9,12)$ |
| $ 4, 4, 2, 1, 1, 1, 1, 1 $ | $150$ | $4$ | $( 1, 8,13,11)( 2, 7)( 4, 5,10,14)$ |
| $ 5, 4, 4, 2 $ | $600$ | $20$ | $( 1, 8,13,11)( 2, 7)( 3, 6, 9,12,15)( 4, 5,10,14)$ |
| $ 4, 4, 4, 1, 1, 1 $ | $125$ | $4$ | $( 4, 7,13,10)( 5, 8,14,11)( 6, 9,15,12)$ |
| $ 4, 4, 4, 1, 1, 1 $ | $375$ | $4$ | $( 4, 7,13,10)( 5,11,14, 8)( 6,12,15, 9)$ |
| $ 12, 3 $ | $1000$ | $12$ | $( 1,11,15, 7, 8, 9,10,14, 6, 4, 2,12)( 3,13, 5)$ |
| $ 4, 4, 4, 2, 1 $ | $750$ | $4$ | $( 1,11,10,14)( 2, 7, 8, 4)( 5,13)( 6, 9,15,12)$ |
| $ 10, 4, 1 $ | $600$ | $20$ | $( 1, 8, 4, 2, 7,11,10, 5,13,14)( 6,12,15, 9)$ |
| $ 4, 2, 2, 2, 2, 2, 1 $ | $150$ | $4$ | $( 1,14)( 2, 7)( 4, 8)( 5,13)( 6,12,15, 9)(10,11)$ |
| $ 4, 4, 4, 1, 1, 1 $ | $375$ | $4$ | $( 4, 7,13,10)( 5, 8,14,11)( 6,12,15, 9)$ |
| $ 4, 4, 4, 1, 1, 1 $ | $125$ | $4$ | $( 4,10,13, 7)( 5,11,14, 8)( 6,12,15, 9)$ |
| $ 12, 3 $ | $1000$ | $12$ | $( 1,11,15, 4, 2,12,10,14, 6, 7, 8, 9)( 3,13, 5)$ |
| $ 4, 4, 4, 2, 1 $ | $750$ | $4$ | $( 1,11,10,14)( 2, 7, 8, 4)( 5,13)( 6,12,15, 9)$ |
| $ 10, 4, 1 $ | $600$ | $20$ | $( 1, 8, 4, 2, 7,11,10, 5,13,14)( 6, 9,15,12)$ |
| $ 4, 2, 2, 2, 2, 2, 1 $ | $150$ | $4$ | $( 1,14)( 2, 7)( 4, 8)( 5,13)( 6, 9,15,12)(10,11)$ |
Group invariants
| Order: | $12000=2^{5} \cdot 3 \cdot 5^{3}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | Data not available |
| Character table: Data not available. |