Group action invariants
| Degree $n$ : | $15$ | |
| Transitive number $t$ : | $63$ | |
| CHM label : | $[3^{4}]S(5)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,6,11)(4,14,9), (1,4,7,10,13)(2,5,8,11,14)(3,6,9,12,15), (1,4)(6,9)(11,14) | |
| $|\Aut(F/K)|$: | $3$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 120: $S_5$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: None
Degree 5: $S_5$
Low degree siblings
30T714, 30T721, 30T727, 30T732, 45T489, 45T491Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $20$ | $3$ | $( 4,14, 9)( 5,10,15)$ |
| $ 3, 3, 3, 3, 1, 1, 1 $ | $30$ | $3$ | $( 2,12, 7)( 3, 8,13)( 4,14, 9)( 5,10,15)$ |
| $ 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $10$ | $3$ | $( 1, 6,11)( 4, 9,14)( 5,10,15)$ |
| $ 3, 3, 3, 3, 3 $ | $5$ | $3$ | $( 1, 6,11)( 2,12, 7)( 3, 8,13)( 4, 9,14)( 5,10,15)$ |
| $ 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $10$ | $3$ | $( 1,11, 6)( 4,14, 9)( 5,15,10)$ |
| $ 3, 3, 3, 3, 3 $ | $5$ | $3$ | $( 1,11, 6)( 2,12, 7)( 3, 8,13)( 4,14, 9)( 5,15,10)$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $30$ | $2$ | $( 1, 4)( 6, 9)(11,14)$ |
| $ 6, 3, 1, 1, 1, 1, 1, 1 $ | $90$ | $6$ | $( 1,14,11, 9, 6, 4)( 5,10,15)$ |
| $ 6, 3, 1, 1, 1, 1, 1, 1 $ | $90$ | $6$ | $( 1, 9, 6,14,11, 4)( 5,15,10)$ |
| $ 3, 3, 2, 2, 2, 1, 1, 1 $ | $180$ | $6$ | $( 1, 4)( 2,12, 7)( 3, 8,13)( 6, 9)(11,14)$ |
| $ 6, 3, 3, 3 $ | $90$ | $6$ | $( 1,14,11, 9, 6, 4)( 2,12, 7)( 3, 8,13)( 5,10,15)$ |
| $ 6, 3, 3, 3 $ | $90$ | $6$ | $( 1, 9, 6,14,11, 4)( 2,12, 7)( 3, 8,13)( 5,15,10)$ |
| $ 6, 3, 3, 1, 1, 1 $ | $90$ | $6$ | $( 1,14,11, 9, 6, 4)( 3,13, 8)( 5,15,10)$ |
| $ 3, 3, 3, 2, 2, 2 $ | $30$ | $6$ | $( 1, 4)( 2, 7,12)( 3, 8,13)( 5,10,15)( 6, 9)(11,14)$ |
| $ 6, 3, 3, 1, 1, 1 $ | $90$ | $6$ | $( 1, 9, 6,14,11, 4)( 2, 7,12)( 3, 8,13)$ |
| $ 3, 3, 3, 2, 2, 2 $ | $30$ | $6$ | $( 1, 4)( 2,12, 7)( 3,13, 8)( 5,15,10)( 6, 9)(11,14)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1 $ | $135$ | $2$ | $( 1, 4)( 2, 5)( 6, 9)( 7,10)(11,14)(12,15)$ |
| $ 6, 6, 1, 1, 1 $ | $270$ | $6$ | $( 1,14,11, 9, 6, 4)( 2,10, 7,15,12, 5)$ |
| $ 6, 3, 2, 2, 2 $ | $270$ | $6$ | $( 1, 4)( 2, 5,12,15, 7,10)( 3, 8,13)( 6, 9)(11,14)$ |
| $ 6, 6, 3 $ | $135$ | $6$ | $( 1, 9, 6,14,11, 4)( 2,15, 7, 5,12,10)( 3, 8,13)$ |
| $ 6, 3, 2, 2, 2 $ | $270$ | $6$ | $( 1, 4)( 2, 5, 7,10,12,15)( 3,13, 8)( 6, 9)(11,14)$ |
| $ 6, 6, 3 $ | $135$ | $6$ | $( 1,14,11, 9, 6, 4)( 2,10,12, 5, 7,15)( 3,13, 8)$ |
| $ 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $180$ | $3$ | $( 1, 4, 7)( 2,11,14)( 6, 9,12)$ |
| $ 9, 3, 1, 1, 1 $ | $360$ | $9$ | $( 1,14, 2,11, 9,12, 6, 4, 7)( 5,10,15)$ |
| $ 9, 3, 1, 1, 1 $ | $360$ | $9$ | $( 1, 9,12, 6,14, 2,11, 4, 7)( 5,15,10)$ |
| $ 9, 3, 3 $ | $180$ | $9$ | $( 1,14,12, 6, 4, 2,11, 9, 7)( 3, 8,13)( 5,10,15)$ |
| $ 3, 3, 3, 3, 3 $ | $360$ | $3$ | $( 1, 9, 7)( 2,11, 4)( 3, 8,13)( 5,15,10)( 6,14,12)$ |
| $ 9, 3, 3 $ | $180$ | $9$ | $( 1, 9, 2,11, 4,12, 6,14, 7)( 3,13, 8)( 5,15,10)$ |
| $ 3, 3, 3, 2, 2, 2 $ | $540$ | $6$ | $( 1, 4, 7)( 2,11,14)( 3,15)( 5, 8)( 6, 9,12)(10,13)$ |
| $ 9, 6 $ | $540$ | $18$ | $( 1,14, 2,11, 9,12, 6, 4, 7)( 3, 5, 8,10,13,15)$ |
| $ 9, 6 $ | $540$ | $18$ | $( 1, 9,12, 6,14, 2,11, 4, 7)( 3,10,13, 5, 8,15)$ |
| $ 4, 4, 4, 1, 1, 1 $ | $810$ | $4$ | $( 1, 4, 7,10)( 2, 5,11,14)( 6, 9,12,15)$ |
| $ 12, 3 $ | $810$ | $12$ | $( 1, 4, 2, 5,11,14,12,15, 6, 9, 7,10)( 3, 8,13)$ |
| $ 12, 3 $ | $810$ | $12$ | $( 1, 4,12,15, 6, 9, 2, 5,11,14, 7,10)( 3,13, 8)$ |
| $ 5, 5, 5 $ | $1944$ | $5$ | $( 1, 4, 7,10,13)( 2, 5, 8,11,14)( 3, 6, 9,12,15)$ |
Group invariants
| Order: | $9720=2^{3} \cdot 3^{5} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | Data not available |
| Character table: Data not available. |