Properties

Label 15T56
Order \(4860\)
n \(15\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $15$
Transitive number $t$ :  $56$
CHM label :  $[3^{5}]F(5)=3wrF(5)$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,4,7,10,13)(2,5,8,11,14)(3,6,9,12,15), (5,10,15), (1,7,4,13)(2,14,8,11)(3,6,12,9)
$|\Aut(F/K)|$:  $3$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
3:  $C_3$
4:  $C_4$
6:  $C_6$
12:  $C_{12}$
20:  $F_5$
60:  $F_5\times C_3$
1620:  15T41

Resolvents shown for degrees $\leq 47$

Subfields

Degree 3: None

Degree 5: $F_5$

Low degree siblings

15T56, 30T551 x 2, 30T552 x 2, 30T555, 45T372, 45T373, 45T377 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 63 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $4860=2^{2} \cdot 3^{5} \cdot 5$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.