Group action invariants
| Degree $n$ : | $15$ | |
| Transitive number $t$ : | $55$ | |
| CHM label : | $[3^{5}:2]D(5)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,4)(2,8)(3,12)(6,9)(7,13)(11,14), (1,11)(2,7)(4,14)(5,10)(8,13), (1,4,7,10,13)(2,5,8,11,14)(3,6,9,12,15), (5,10,15) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 6: $S_3$ 10: $D_{5}$ 12: $D_{6}$ 20: $D_{10}$ 60: $D_5\times S_3$ 1620: 15T43 Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: None
Degree 5: $D_{5}$
Low degree siblings
15T55 x 7, 30T553 x 8, 30T554 x 8, 30T561 x 8, 30T563 x 4, 45T368 x 4, 45T371 x 4, 45T378 x 16, 45T379 x 16, 45T380 x 8Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $10$ | $3$ | $( 1,11, 6)( 3,13, 8)( 5,15,10)$ |
| $ 3, 3, 3, 3, 3 $ | $10$ | $3$ | $( 1,11, 6)( 2,12, 7)( 3,13, 8)( 4,14, 9)( 5,10,15)$ |
| $ 3, 3, 3, 3, 1, 1, 1 $ | $10$ | $3$ | $( 1, 6,11)( 2,12, 7)( 3, 8,13)( 4,14, 9)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $10$ | $3$ | $( 3,13, 8)( 4, 9,14)$ |
| $ 3, 3, 3, 3, 1, 1, 1 $ | $10$ | $3$ | $( 1,11, 6)( 3, 8,13)( 4, 9,14)( 5,15,10)$ |
| $ 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $10$ | $3$ | $( 1, 6,11)( 4, 9,14)( 5,10,15)$ |
| $ 3, 3, 3, 3, 1, 1, 1 $ | $10$ | $3$ | $( 1,11, 6)( 2,12, 7)( 3, 8,13)( 5,10,15)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $10$ | $3$ | $( 2,12, 7)( 4, 9,14)$ |
| $ 5, 5, 5 $ | $162$ | $5$ | $( 1, 4, 7,10,13)( 2, 5, 8,11,14)( 3, 6, 9,12,15)$ |
| $ 5, 5, 5 $ | $162$ | $5$ | $( 1, 7,13, 4,10)( 2, 8,14, 5,11)( 3, 9,15, 6,12)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1 $ | $45$ | $2$ | $( 2, 5)( 3, 9)( 4,13)( 7,10)( 8,14)(12,15)$ |
| $ 6, 6, 3 $ | $90$ | $6$ | $( 1,11, 6)( 2,15,12,10, 7, 5)( 3, 9,13, 4, 8,14)$ |
| $ 6, 6, 1, 1, 1 $ | $90$ | $6$ | $( 2,15, 7, 5,12,10)( 3, 4,13,14, 8, 9)$ |
| $ 6, 3, 2, 2, 2 $ | $90$ | $6$ | $( 1,11, 6)( 2,10)( 3, 4, 8, 9,13,14)( 5,12)( 7,15)$ |
| $ 6, 3, 2, 2, 2 $ | $90$ | $6$ | $( 1, 6,11)( 2, 5,12,15, 7,10)( 3, 4)( 8, 9)(13,14)$ |
| $ 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $10$ | $3$ | $( 5,15,10)$ |
| $ 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $20$ | $3$ | $( 1,11, 6)( 3,13, 8)( 5,10,15)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $10$ | $3$ | $( 1, 6,11)( 3, 8,13)$ |
| $ 3, 3, 3, 3, 1, 1, 1 $ | $10$ | $3$ | $( 1,11, 6)( 2,12, 7)( 3,13, 8)( 4,14, 9)$ |
| $ 3, 3, 3, 3, 3 $ | $10$ | $3$ | $( 1, 6,11)( 2,12, 7)( 3, 8,13)( 4,14, 9)( 5,15,10)$ |
| $ 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 6,11)( 2, 7,12)( 3, 8,13)( 4, 9,14)( 5,10,15)$ |
| $ 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $10$ | $3$ | $( 3,13, 8)( 4, 9,14)( 5,15,10)$ |
| $ 3, 3, 3, 3, 1, 1, 1 $ | $20$ | $3$ | $( 1,11, 6)( 3, 8,13)( 4, 9,14)( 5,10,15)$ |
| $ 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $10$ | $3$ | $( 2,12, 7)( 3,13, 8)( 5,10,15)$ |
| $ 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $20$ | $3$ | $( 1,11, 6)( 2,12, 7)( 3, 8,13)$ |
| $ 3, 3, 3, 3, 3 $ | $10$ | $3$ | $( 1,11, 6)( 2, 7,12)( 3, 8,13)( 4,14, 9)( 5,15,10)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $10$ | $3$ | $( 2, 7,12)( 3, 8,13)$ |
| $ 3, 3, 3, 3, 1, 1, 1 $ | $20$ | $3$ | $( 1, 6,11)( 3, 8,13)( 4,14, 9)( 5,10,15)$ |
| $ 15 $ | $324$ | $15$ | $( 1, 4, 7,10, 8,11,14, 2, 5, 3, 6, 9,12,15,13)$ |
| $ 15 $ | $324$ | $15$ | $( 1, 7,13, 4,10,11, 2, 8,14, 5, 6,12, 3, 9,15)$ |
| $ 6, 2, 2, 2, 1, 1, 1 $ | $90$ | $6$ | $( 2, 5,12,15, 7,10)( 3, 9)( 4,13)( 8,14)$ |
| $ 6, 6, 3 $ | $90$ | $6$ | $( 1,11, 6)( 2,15, 7, 5,12,10)( 3, 9,13, 4, 8,14)$ |
| $ 6, 3, 2, 2, 2 $ | $90$ | $6$ | $( 1, 6,11)( 2,10)( 3, 9, 8,14,13, 4)( 5,12)( 7,15)$ |
| $ 6, 2, 2, 2, 1, 1, 1 $ | $90$ | $6$ | $( 2,15)( 3, 4,13,14, 8, 9)( 5, 7)(10,12)$ |
| $ 6, 6, 3 $ | $90$ | $6$ | $( 1,11, 6)( 2,10,12, 5, 7,15)( 3, 4, 8, 9,13,14)$ |
| $ 6, 3, 2, 2, 2 $ | $90$ | $6$ | $( 1, 6,11)( 2, 5, 7,10,12,15)( 3, 4)( 8, 9)(13,14)$ |
| $ 6, 6, 1, 1, 1 $ | $90$ | $6$ | $( 2,10, 7,15,12, 5)( 3,14, 8, 4,13, 9)$ |
| $ 3, 2, 2, 2, 2, 2, 2 $ | $90$ | $6$ | $( 1,11, 6)( 2, 5)( 3,14)( 4, 8)( 7,10)( 9,13)(12,15)$ |
| $ 6, 6, 3 $ | $90$ | $6$ | $( 1, 6,11)( 2,15,12,10, 7, 5)( 3,14,13, 9, 8, 4)$ |
| $ 2, 2, 2, 2, 2, 1, 1, 1, 1, 1 $ | $243$ | $2$ | $( 6,11)( 7,12)( 8,13)( 9,14)(10,15)$ |
| $ 10, 5 $ | $486$ | $10$ | $( 1, 4, 7,15,13,11, 9, 2, 5, 8)( 3, 6,14,12,10)$ |
| $ 10, 5 $ | $486$ | $10$ | $( 1, 7, 3, 9, 5,11,12,13,14,15)( 2, 8, 4,10, 6)$ |
| $ 6, 2, 2, 2, 2, 1 $ | $270$ | $6$ | $( 2, 5)( 3, 9, 8, 4,13,14)( 6,11)( 7,15)(10,12)$ |
| $ 6, 2, 2, 2, 2, 1 $ | $270$ | $6$ | $( 1,11)( 2,15, 7,10,12, 5)( 3, 9)( 4, 8)(13,14)$ |
| $ 6, 6, 2, 1 $ | $270$ | $6$ | $( 1, 6)( 2,10,12,15, 7, 5)( 3, 9,13,14, 8, 4)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 1 $ | $135$ | $2$ | $( 2,10)( 3,14)( 4,13)( 5, 7)( 6,11)( 8, 9)(12,15)$ |
| $ 6, 6, 2, 1 $ | $270$ | $6$ | $( 1,11)( 2, 5, 7,15,12,10)( 3,14,13, 4, 8, 9)$ |
Group invariants
| Order: | $4860=2^{2} \cdot 3^{5} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | Data not available |
| Character table: Data not available. |