Show commands:
Magma
magma: G := TransitiveGroup(15, 5);
Group action invariants
Degree $n$: | $15$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $5$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $A_5$ | ||
CHM label: | $A_{5}(15)$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $3$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,9,10,3,14)(2,15,7,12,6)(4,5,11,13,8), (1,4,10)(2,5,8)(3,7,11)(6,9,15)(12,14,13) | magma: Generators(G);
|
Low degree resolvents
noneResolvents shown for degrees $\leq 47$
Subfields
Degree 3: None
Degree 5: $A_5$
Low degree siblings
5T4, 6T12, 10T7, 12T33, 20T15, 30T9Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{15}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{6},1^{3}$ | $15$ | $2$ | $6$ | $( 1,12)( 3, 5)( 6,13)( 7,10)( 8,14)(11,15)$ |
3A | $3^{5}$ | $20$ | $3$ | $10$ | $( 1,11, 5)( 2, 9, 4)( 3,10, 6)( 7,15, 8)(12,13,14)$ |
5A1 | $5^{3}$ | $12$ | $5$ | $12$ | $( 1,14, 2, 5, 7)( 3, 8,13, 9,15)( 4,10,11, 6,12)$ |
5A2 | $5^{3}$ | $12$ | $5$ | $12$ | $( 1,13, 2,11,10)( 3,15, 6,14, 4)( 5, 8,12, 9, 7)$ |
Malle's constant $a(G)$: $1/6$
magma: ConjugacyClasses(G);
Group invariants
Order: | $60=2^{2} \cdot 3 \cdot 5$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | no | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 60.5 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 3A | 5A1 | 5A2 | ||
Size | 1 | 15 | 20 | 12 | 12 | |
2 P | 1A | 1A | 3A | 5A2 | 5A1 | |
3 P | 1A | 2A | 1A | 5A2 | 5A1 | |
5 P | 1A | 2A | 3A | 1A | 1A | |
Type | ||||||
60.5.1a | R | |||||
60.5.3a1 | R | |||||
60.5.3a2 | R | |||||
60.5.4a | R | |||||
60.5.5a | R |
magma: CharacterTable(G);