Properties

Label 15T5
Degree $15$
Order $60$
Cyclic no
Abelian no
Solvable no
Primitive no
$p$-group no
Group: $A_5$

Related objects

Downloads

Learn more

Show commands: Magma

magma: G := TransitiveGroup(15, 5);
 

Group action invariants

Degree $n$:  $15$
magma: t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $5$
magma: t, n := TransitiveGroupIdentification(G); t;
 
Group:  $A_5$
CHM label:   $A_{5}(15)$
Parity:  $1$
magma: IsEven(G);
 
Primitive:  no
magma: IsPrimitive(G);
 
magma: NilpotencyClass(G);
 
$\card{\Aut(F/K)}$:  $3$
magma: Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  (1,9,10,3,14)(2,15,7,12,6)(4,5,11,13,8), (1,4,10)(2,5,8)(3,7,11)(6,9,15)(12,14,13)
magma: Generators(G);
 

Low degree resolvents

none

Resolvents shown for degrees $\leq 47$

Subfields

Degree 3: None

Degree 5: $A_5$

Low degree siblings

5T4, 6T12, 10T7, 12T33, 20T15, 30T9

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{15}$ $1$ $1$ $0$ $()$
2A $2^{6},1^{3}$ $15$ $2$ $6$ $( 1,12)( 3, 5)( 6,13)( 7,10)( 8,14)(11,15)$
3A $3^{5}$ $20$ $3$ $10$ $( 1,11, 5)( 2, 9, 4)( 3,10, 6)( 7,15, 8)(12,13,14)$
5A1 $5^{3}$ $12$ $5$ $12$ $( 1,14, 2, 5, 7)( 3, 8,13, 9,15)( 4,10,11, 6,12)$
5A2 $5^{3}$ $12$ $5$ $12$ $( 1,13, 2,11,10)( 3,15, 6,14, 4)( 5, 8,12, 9, 7)$

Malle's constant $a(G)$:     $1/6$

magma: ConjugacyClasses(G);
 

Group invariants

Order:  $60=2^{2} \cdot 3 \cdot 5$
magma: Order(G);
 
Cyclic:  no
magma: IsCyclic(G);
 
Abelian:  no
magma: IsAbelian(G);
 
Solvable:  no
magma: IsSolvable(G);
 
Nilpotency class:   not nilpotent
Label:  60.5
magma: IdentifyGroup(G);
 
Character table:

1A 2A 3A 5A1 5A2
Size 1 15 20 12 12
2 P 1A 1A 3A 5A2 5A1
3 P 1A 2A 1A 5A2 5A1
5 P 1A 2A 3A 1A 1A
Type
60.5.1a R 1 1 1 1 1
60.5.3a1 R 3 1 0 ζ51ζ5 ζ52ζ52
60.5.3a2 R 3 1 0 ζ52ζ52 ζ51ζ5
60.5.4a R 4 0 1 1 1
60.5.5a R 5 1 1 0 0

magma: CharacterTable(G);