Group action invariants
| Degree $n$ : | $15$ | |
| Transitive number $t$ : | $49$ | |
| CHM label : | $[5^{3}:4]S(3)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,11)(2,7)(4,14)(5,10)(8,13), (1,6,11)(2,7,12)(3,8,13)(4,9,14)(5,10,15), (1,7,4,13)(2,14,8,11)(3,6,12,9), (3,6,9,12,15) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 2, $C_2^2$ 6: $S_3$ 8: $C_4\times C_2$ 12: $D_{6}$ 20: $F_5$ 24: $S_3 \times C_4$ 40: $F_{5}\times C_2$ 120: $F_5 \times S_3$ 600: 15T27 Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $S_3$
Degree 5: None
Low degree siblings
15T49 x 3, 30T433 x 4, 30T435 x 2, 30T438 x 4, 30T442 x 4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 5, 5, 5 $ | $12$ | $5$ | $( 1, 7,13, 4,10)( 2,14,11, 8, 5)( 3,15,12, 9, 6)$ |
| $ 5, 5, 1, 1, 1, 1, 1 $ | $12$ | $5$ | $( 2,14,11, 8, 5)( 3, 6, 9,12,15)$ |
| $ 3, 3, 3, 3, 3 $ | $50$ | $3$ | $( 1,11, 6)( 2,12, 7)( 3,13, 8)( 4,14, 9)( 5,15,10)$ |
| $ 2, 2, 2, 2, 2, 1, 1, 1, 1, 1 $ | $15$ | $2$ | $( 2,12)( 3, 8)( 5,15)( 6,11)( 9,14)$ |
| $ 10, 5 $ | $60$ | $10$ | $( 1, 7,13, 4,10)( 2, 9,11, 3, 5,12,14, 6, 8,15)$ |
| $ 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $12$ | $5$ | $( 3, 6, 9,12,15)$ |
| $ 5, 5, 1, 1, 1, 1, 1 $ | $24$ | $5$ | $( 1, 7,13, 4,10)( 2,14,11, 8, 5)$ |
| $ 5, 5, 5 $ | $12$ | $5$ | $( 1,13,10, 7, 4)( 2,11, 5,14, 8)( 3,15,12, 9, 6)$ |
| $ 5, 5, 5 $ | $24$ | $5$ | $( 1,10, 4,13, 7)( 2, 5, 8,11,14)( 3, 9,15, 6,12)$ |
| $ 5, 5, 1, 1, 1, 1, 1 $ | $12$ | $5$ | $( 1,10, 4,13, 7)( 3,12, 6,15, 9)$ |
| $ 5, 5, 5 $ | $12$ | $5$ | $( 1, 4, 7,10,13)( 2, 5, 8,11,14)( 3,15,12, 9, 6)$ |
| $ 5, 5, 5 $ | $4$ | $5$ | $( 1, 7,13, 4,10)( 2, 8,14, 5,11)( 3, 9,15, 6,12)$ |
| $ 15 $ | $200$ | $15$ | $( 1,11, 6, 4,14, 9, 7, 2,12,10, 5,15,13, 8, 3)$ |
| $ 10, 1, 1, 1, 1, 1 $ | $60$ | $10$ | $( 2,12, 5,15, 8, 3,11, 6,14, 9)$ |
| $ 10, 5 $ | $60$ | $10$ | $( 1, 7,13, 4,10)( 2, 9,14, 6,11, 3, 8,15, 5,12)$ |
| $ 10, 5 $ | $60$ | $10$ | $( 1,13,10, 7, 4)( 2, 6, 8,12,14, 3, 5, 9,11,15)$ |
| $ 10, 5 $ | $60$ | $10$ | $( 1,10, 4,13, 7)( 2,15,11, 9, 5, 3,14,12, 8, 6)$ |
| $ 5, 2, 2, 2, 2, 2 $ | $60$ | $10$ | $( 1, 4, 7,10,13)( 2, 3)( 5, 6)( 8, 9)(11,12)(14,15)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1 $ | $125$ | $2$ | $( 4,13)( 5,14)( 6,15)( 7,10)( 8,11)( 9,12)$ |
| $ 6, 6, 3 $ | $250$ | $6$ | $( 1,11, 3,13,14,15)( 2,12, 4, 8, 6,10)( 5, 9, 7)$ |
| $ 10, 2, 2, 1 $ | $300$ | $10$ | $( 2,12,14,15,11, 3, 8, 6, 5, 9)( 4,13)( 7,10)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 1 $ | $75$ | $2$ | $( 2, 3)( 4,13)( 5,15)( 6,14)( 7,10)( 8,12)( 9,11)$ |
| $ 4, 4, 4, 1, 1, 1 $ | $125$ | $4$ | $( 4, 7,13,10)( 5, 8,14,11)( 6, 9,15,12)$ |
| $ 12, 3 $ | $250$ | $12$ | $( 1,11,15, 7, 8, 9,10,14, 6, 4, 2,12)( 3,13, 5)$ |
| $ 4, 4, 4, 2, 1 $ | $375$ | $4$ | $( 2,12,11,15)( 3, 8, 9, 5)( 4, 7,13,10)( 6,14)$ |
| $ 4, 4, 4, 1, 1, 1 $ | $125$ | $4$ | $( 4,10,13, 7)( 5,11,14, 8)( 6,12,15, 9)$ |
| $ 12, 3 $ | $250$ | $12$ | $( 1,11, 9)( 2,12,10, 8,15, 4, 5, 6, 7,14, 3,13)$ |
| $ 4, 4, 4, 2, 1 $ | $375$ | $4$ | $( 2,12, 5, 6)( 3, 8,15,14)( 4,10,13, 7)( 9,11)$ |
Group invariants
| Order: | $3000=2^{3} \cdot 3 \cdot 5^{3}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | Data not available |
| Character table: Data not available. |