Show commands: Magma
Group invariants
| Abstract group: | $C_5^3:(C_4\times S_3)$ |
| |
| Order: | $3000=2^{3} \cdot 3 \cdot 5^{3}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $15$ |
| |
| Transitive number $t$: | $49$ |
| |
| CHM label: | $[5^{3}:4]S(3)$ | ||
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $1$ |
| |
| Generators: | $(1,11)(2,7)(4,14)(5,10)(8,13)$, $(1,6,11)(2,7,12)(3,8,13)(4,9,14)(5,10,15)$, $(1,7,4,13)(2,14,8,11)(3,6,12,9)$, $(3,6,9,12,15)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_4$ x 2, $C_2^2$ $6$: $S_3$ $8$: $C_4\times C_2$ $12$: $D_{6}$ $20$: $F_5$ $24$: $S_3 \times C_4$ $40$: $F_{5}\times C_2$ $120$: $F_5 \times S_3$ $600$: 15T27 Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $S_3$
Degree 5: None
Low degree siblings
15T49 x 3, 30T433 x 4, 30T435 x 2, 30T438 x 4, 30T442 x 4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{15}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{5},1^{5}$ | $15$ | $2$ | $5$ | $( 1,15)( 3, 4)( 6, 7)( 9,10)(12,13)$ |
| 2B | $2^{7},1$ | $75$ | $2$ | $7$ | $( 1, 3)( 2, 5)( 4,15)( 6,13)( 7,12)( 8,14)( 9,10)$ |
| 2C | $2^{6},1^{3}$ | $125$ | $2$ | $6$ | $( 1,13)( 2, 5)( 3, 9)( 4,10)( 8,14)(12,15)$ |
| 3A | $3^{5}$ | $50$ | $3$ | $10$ | $( 1, 3,14)( 2, 4, 6)( 5, 7, 9)( 8,10,12)(11,13,15)$ |
| 4A1 | $4^{3},1^{3}$ | $125$ | $4$ | $9$ | $( 1,10,13, 4)( 2,14, 8,11)( 3,12,15, 6)$ |
| 4A-1 | $4^{3},1^{3}$ | $125$ | $4$ | $9$ | $( 1, 4,13,10)( 2,11, 8,14)( 3, 6,15,12)$ |
| 4B1 | $4^{3},2,1$ | $375$ | $4$ | $10$ | $( 1, 4,13,10)( 2, 9, 5, 3)( 6,11)( 8,12,14,15)$ |
| 4B-1 | $4^{3},2,1$ | $375$ | $4$ | $10$ | $( 1,10,13, 4)( 2, 3, 5, 9)( 6,11)( 8,15,14,12)$ |
| 5A | $5^{3}$ | $4$ | $5$ | $12$ | $( 1, 7,13, 4,10)( 2, 8,14, 5,11)( 3, 9,15, 6,12)$ |
| 5B | $5^{2},1^{5}$ | $12$ | $5$ | $8$ | $( 1, 7,13, 4,10)( 3, 9,15, 6,12)$ |
| 5C | $5^{2},1^{5}$ | $12$ | $5$ | $8$ | $( 1,13,10, 7, 4)( 3, 6, 9,12,15)$ |
| 5D | $5^{3}$ | $12$ | $5$ | $12$ | $( 1, 4, 7,10,13)( 2,14,11, 8, 5)( 3, 6, 9,12,15)$ |
| 5E | $5^{3}$ | $12$ | $5$ | $12$ | $( 1,13,10, 7, 4)( 2,11, 5,14, 8)( 3,12, 6,15, 9)$ |
| 5F | $5^{3}$ | $12$ | $5$ | $12$ | $( 1,13,10, 7, 4)( 2, 8,14, 5,11)( 3, 9,15, 6,12)$ |
| 5G | $5,1^{10}$ | $12$ | $5$ | $4$ | $( 3,12, 6,15, 9)$ |
| 5H | $5^{2},1^{5}$ | $24$ | $5$ | $8$ | $( 2,14,11, 8, 5)( 3, 9,15, 6,12)$ |
| 5I | $5^{3}$ | $24$ | $5$ | $12$ | $( 1,13,10, 7, 4)( 2,11, 5,14, 8)( 3, 9,15, 6,12)$ |
| 6A | $6^{2},3$ | $250$ | $6$ | $12$ | $( 1,11, 3,13,14,15)( 2,12, 4, 8, 6,10)( 5, 9, 7)$ |
| 10A | $10,1^{5}$ | $60$ | $10$ | $9$ | $( 1, 3, 7, 9,13,15, 4, 6,10,12)$ |
| 10B | $10,5$ | $60$ | $10$ | $13$ | $( 1, 5, 7,11,13, 2, 4, 8,10,14)( 3, 6, 9,12,15)$ |
| 10C | $10,5$ | $60$ | $10$ | $13$ | $( 1, 6, 4, 9, 7,12,10,15,13, 3)( 2, 8,14, 5,11)$ |
| 10D | $10,5$ | $60$ | $10$ | $13$ | $( 1, 7,13, 4,10)( 2,12,11, 6, 5,15,14, 9, 8, 3)$ |
| 10E | $10,5$ | $60$ | $10$ | $13$ | $( 1, 7,13, 4,10)( 2,15, 8, 6,14,12, 5, 3,11, 9)$ |
| 10F | $5,2^{5}$ | $60$ | $10$ | $9$ | $( 1,14)( 2, 4)( 3,15,12, 9, 6)( 5, 7)( 8,10)(11,13)$ |
| 10G | $10,2^{2},1$ | $300$ | $10$ | $11$ | $( 1,12,13,15,10, 3, 7, 6, 4, 9)( 2, 5)( 8,14)$ |
| 12A1 | $12,3$ | $250$ | $12$ | $13$ | $( 1, 6,11,10, 3, 2,13,12,14, 4,15, 8)( 5, 7, 9)$ |
| 12A-1 | $12,3$ | $250$ | $12$ | $13$ | $( 1, 8,15, 4,14,12,13, 2, 3,10,11, 6)( 5, 9, 7)$ |
| 15A | $15$ | $200$ | $15$ | $14$ | $( 1,11,15, 4,14, 3, 7, 2, 6,10, 5, 9,13, 8,12)$ |
Malle's constant $a(G)$: $1/4$
Character table
| 1A | 2A | 2B | 2C | 3A | 4A1 | 4A-1 | 4B1 | 4B-1 | 5A | 5B | 5C | 5D | 5E | 5F | 5G | 5H | 5I | 6A | 10A | 10B | 10C | 10D | 10E | 10F | 10G | 12A1 | 12A-1 | 15A | ||
| Size | 1 | 15 | 75 | 125 | 50 | 125 | 125 | 375 | 375 | 4 | 12 | 12 | 12 | 12 | 12 | 12 | 24 | 24 | 250 | 60 | 60 | 60 | 60 | 60 | 60 | 300 | 250 | 250 | 200 | |
| 2 P | 1A | 1A | 1A | 1A | 3A | 2C | 2C | 2C | 2C | 5A | 5B | 5C | 5D | 5E | 5F | 5G | 5H | 5I | 3A | 5B | 5A | 5D | 5E | 5F | 5G | 5C | 6A | 6A | 15A | |
| 3 P | 1A | 2A | 2B | 2C | 1A | 4A-1 | 4A1 | 4B-1 | 4B1 | 5A | 5B | 5C | 5D | 5E | 5F | 5G | 5H | 5I | 2C | 10A | 10B | 10C | 10D | 10E | 10F | 10G | 4A1 | 4A-1 | 5A | |
| 5 P | 1A | 2A | 2B | 2C | 3A | 4A1 | 4A-1 | 4B1 | 4B-1 | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 6A | 2A | 2A | 2A | 2A | 2A | 2A | 2B | 12A1 | 12A-1 | 3A | |
| Type | ||||||||||||||||||||||||||||||
| 3000.bf.1a | R | |||||||||||||||||||||||||||||
| 3000.bf.1b | R | |||||||||||||||||||||||||||||
| 3000.bf.1c | R | |||||||||||||||||||||||||||||
| 3000.bf.1d | R | |||||||||||||||||||||||||||||
| 3000.bf.1e1 | C | |||||||||||||||||||||||||||||
| 3000.bf.1e2 | C | |||||||||||||||||||||||||||||
| 3000.bf.1f1 | C | |||||||||||||||||||||||||||||
| 3000.bf.1f2 | C | |||||||||||||||||||||||||||||
| 3000.bf.2a | R | |||||||||||||||||||||||||||||
| 3000.bf.2b | R | |||||||||||||||||||||||||||||
| 3000.bf.2c1 | C | |||||||||||||||||||||||||||||
| 3000.bf.2c2 | C | |||||||||||||||||||||||||||||
| 3000.bf.4a | R | |||||||||||||||||||||||||||||
| 3000.bf.4b | R | |||||||||||||||||||||||||||||
| 3000.bf.8a | R | |||||||||||||||||||||||||||||
| 3000.bf.12a | R | |||||||||||||||||||||||||||||
| 3000.bf.12b | R | |||||||||||||||||||||||||||||
| 3000.bf.12c | R | |||||||||||||||||||||||||||||
| 3000.bf.12d | R | |||||||||||||||||||||||||||||
| 3000.bf.12e | R | |||||||||||||||||||||||||||||
| 3000.bf.12f | R | |||||||||||||||||||||||||||||
| 3000.bf.12g | R | |||||||||||||||||||||||||||||
| 3000.bf.12h | R | |||||||||||||||||||||||||||||
| 3000.bf.12i | R | |||||||||||||||||||||||||||||
| 3000.bf.12j | R | |||||||||||||||||||||||||||||
| 3000.bf.12k | R | |||||||||||||||||||||||||||||
| 3000.bf.12l | R | |||||||||||||||||||||||||||||
| 3000.bf.24a | R | |||||||||||||||||||||||||||||
| 3000.bf.24b | R |
Regular extensions
Data not computed