Group action invariants
| Degree $n$ : | $15$ | |
| Transitive number $t$ : | $48$ | |
| CHM label : | $1/2[D(5)^{3}]S(3)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,11)(2,7)(3,12)(4,14)(5,10)(6,9)(8,13), (1,4)(2,8)(7,13)(11,14), (1,6,11)(2,7,12)(3,8,13)(4,9,14)(5,10,15), (3,6,9,12,15) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 6: $S_3$ 24: $S_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $S_3$
Degree 5: None
Low degree siblings
20T270, 30T413, 30T424, 30T431, 30T432, 30T440, 40T2385Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $6$ | $5$ | $( 3, 6, 9,12,15)$ |
| $ 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $6$ | $5$ | $( 3, 9,15, 6,12)$ |
| $ 5, 5, 1, 1, 1, 1, 1 $ | $12$ | $5$ | $( 2, 5, 8,11,14)( 3, 6, 9,12,15)$ |
| $ 5, 5, 1, 1, 1, 1, 1 $ | $24$ | $5$ | $( 2, 5, 8,11,14)( 3, 9,15, 6,12)$ |
| $ 5, 5, 1, 1, 1, 1, 1 $ | $12$ | $5$ | $( 2, 8,14, 5,11)( 3, 9,15, 6,12)$ |
| $ 5, 5, 5 $ | $8$ | $5$ | $( 1, 4, 7,10,13)( 2, 5, 8,11,14)( 3, 6, 9,12,15)$ |
| $ 5, 5, 5 $ | $24$ | $5$ | $( 1, 4, 7,10,13)( 2, 5, 8,11,14)( 3, 9,15, 6,12)$ |
| $ 5, 5, 5 $ | $24$ | $5$ | $( 1, 4, 7,10,13)( 2, 8,14, 5,11)( 3, 9,15, 6,12)$ |
| $ 5, 5, 5 $ | $8$ | $5$ | $( 1, 7,13, 4,10)( 2, 8,14, 5,11)( 3, 9,15, 6,12)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1 $ | $75$ | $2$ | $( 4,13)( 5,14)( 7,10)( 8,11)$ |
| $ 5, 2, 2, 2, 2, 1, 1 $ | $150$ | $10$ | $( 3, 6, 9,12,15)( 4,13)( 5,14)( 7,10)( 8,11)$ |
| $ 5, 2, 2, 2, 2, 1, 1 $ | $150$ | $10$ | $( 3, 9,15, 6,12)( 4,13)( 5,14)( 7,10)( 8,11)$ |
| $ 3, 3, 3, 3, 3 $ | $200$ | $3$ | $( 1,14, 9)( 2,12,13)( 3, 7, 8)( 4,11, 6)( 5,15,10)$ |
| $ 15 $ | $200$ | $15$ | $( 1,14,12,13, 2,15,10, 5, 3, 7, 8, 6, 4,11, 9)$ |
| $ 15 $ | $200$ | $15$ | $( 1,14,15,10, 5, 6, 4,11,12,13, 2, 3, 7, 8, 9)$ |
| $ 15 $ | $200$ | $15$ | $( 1,14, 6, 4,11, 3, 7, 8,15,10, 5,12,13, 2, 9)$ |
| $ 15 $ | $200$ | $15$ | $( 1,14, 3, 7, 8,12,13, 2, 6, 4,11,15,10, 5, 9)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 1 $ | $150$ | $2$ | $( 1,11)( 2, 7)( 4,14)( 5,10)( 6,15)( 8,13)( 9,12)$ |
| $ 10, 2, 2, 1 $ | $300$ | $10$ | $( 1,14, 4, 2, 7, 5,10, 8,13,11)( 6,15)( 9,12)$ |
| $ 10, 2, 2, 1 $ | $300$ | $10$ | $( 1, 2, 7, 8,13,14, 4, 5,10,11)( 6,15)( 9,12)$ |
| $ 4, 4, 2, 1, 1, 1, 1, 1 $ | $150$ | $4$ | $( 1, 8,13,11)( 2, 7)( 4, 5,10,14)$ |
| $ 5, 4, 4, 2 $ | $150$ | $20$ | $( 1, 8,13,11)( 2, 7)( 3, 6, 9,12,15)( 4, 5,10,14)$ |
| $ 5, 4, 4, 2 $ | $150$ | $20$ | $( 1, 8,13,11)( 2, 7)( 3, 9,15, 6,12)( 4, 5,10,14)$ |
| $ 5, 4, 4, 2 $ | $150$ | $20$ | $( 1, 8,13,11)( 2, 7)( 3,15,12, 9, 6)( 4, 5,10,14)$ |
| $ 5, 4, 4, 2 $ | $150$ | $20$ | $( 1, 8,13,11)( 2, 7)( 3,12, 6,15, 9)( 4, 5,10,14)$ |
Group invariants
| Order: | $3000=2^{3} \cdot 3 \cdot 5^{3}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | Data not available |
| Character table: Data not available. |