Group action invariants
| Degree $n$ : | $15$ | |
| Transitive number $t$ : | $47$ | |
| Group : | $A_7$ | |
| CHM label : | $A_{7}(15)$ | |
| Parity: | $1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,9,10,3,14)(2,15,7,12,6)(4,5,11,13,8), (1,2,3)(5,6,7)(8,10,9)(12,14,13) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
NoneResolvents shown for degrees $\leq 47$
Subfields
Degree 3: None
Degree 5: None
Low degree siblings
7T6, 15T47, 21T33, 35T28, 42T294, 42T299Siblings are shown with degree $\leq 47$
A number field with this Galois group has exactly one arithmetically equivalent field.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1 $ | $105$ | $2$ | $( 1, 4)( 3,11)( 5, 8)( 6,14)( 9,12)(13,15)$ |
| $ 4, 4, 4, 2, 1 $ | $630$ | $4$ | $( 1,14, 4, 6)( 3, 9,11,12)( 5,13, 8,15)( 7,10)$ |
| $ 5, 5, 5 $ | $504$ | $5$ | $( 1, 5,14, 7, 2)( 3, 9, 8,15,13)( 4, 6,10,12,11)$ |
| $ 7, 7, 1 $ | $360$ | $7$ | $( 1, 7, 4, 8,13, 2,11)( 3,10,15, 6, 5, 9,12)$ |
| $ 7, 7, 1 $ | $360$ | $7$ | $( 1,11, 2,13, 8, 4, 7)( 3,12, 9, 5, 6,15,10)$ |
| $ 3, 3, 3, 3, 3 $ | $70$ | $3$ | $( 1, 9, 7)( 2, 6,11)( 3,12,15)( 4,14, 5)( 8,13,10)$ |
| $ 6, 6, 3 $ | $210$ | $6$ | $( 1,14,13, 9, 3, 8)( 2,10, 7)( 4, 6,15,12,11, 5)$ |
| $ 3, 3, 3, 3, 1, 1, 1 $ | $280$ | $3$ | $( 1, 3, 4)( 5, 7,15)( 8,10,13)( 9,12,14)$ |
Group invariants
| Order: | $2520=2^{3} \cdot 3^{2} \cdot 5 \cdot 7$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | Data not available |
| Character table: |
2 3 . 3 2 2 2 . . .
3 2 2 1 . 2 1 . . .
5 1 . . . . . . . 1
7 1 . . . . . 1 1 .
1a 3a 2a 4a 3b 6a 7a 7b 5a
2P 1a 3a 1a 2a 3b 3b 7a 7b 5a
3P 1a 1a 2a 4a 1a 2a 7b 7a 5a
5P 1a 3a 2a 4a 3b 6a 7b 7a 1a
7P 1a 3a 2a 4a 3b 6a 1a 1a 5a
X.1 1 1 1 1 1 1 1 1 1
X.2 6 . 2 . 3 -1 -1 -1 1
X.3 10 1 -2 . 1 1 A /A .
X.4 10 1 -2 . 1 1 /A A .
X.5 14 -1 2 . 2 2 . . -1
X.6 14 2 2 . -1 -1 . . -1
X.7 15 . -1 -1 3 -1 1 1 .
X.8 21 . 1 -1 -3 1 . . 1
X.9 35 -1 -1 1 -1 -1 . . .
A = E(7)^3+E(7)^5+E(7)^6
= (-1-Sqrt(-7))/2 = -1-b7
|