Group action invariants
| Degree $n$ : | $15$ | |
| Transitive number $t$ : | $45$ | |
| CHM label : | $1/2[3^{5}:2]D(5)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,4,7,10,13)(2,5,8,11,14)(3,6,9,12,15), (5,10,15), (1,14)(2,13)(3,12)(4,11)(5,10)(6,9)(7,8) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 6: $S_3$ 10: $D_{5}$ 30: $D_{15}$ 810: 15T34 Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: None
Degree 5: $D_{5}$
Low degree siblings
15T45 x 7, 30T389 x 8, 30T392 x 4, 45T248 x 4, 45T249 x 4, 45T259 x 16, 45T260 x 16, 45T264 x 8Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $10$ | $3$ | $( 1,11, 6)( 3,13, 8)( 5,15,10)$ |
| $ 3, 3, 3, 3, 1, 1, 1 $ | $5$ | $3$ | $( 1,11, 6)( 2, 7,12)( 3,13, 8)( 4, 9,14)$ |
| $ 3, 3, 3, 3, 3 $ | $10$ | $3$ | $( 1, 6,11)( 2, 7,12)( 3, 8,13)( 4, 9,14)( 5,15,10)$ |
| $ 3, 3, 3, 3, 1, 1, 1 $ | $5$ | $3$ | $( 1, 6,11)( 2,12, 7)( 3, 8,13)( 4,14, 9)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $5$ | $3$ | $( 3, 8,13)( 4,14, 9)$ |
| $ 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $10$ | $3$ | $( 1,11, 6)( 4,14, 9)( 5,15,10)$ |
| $ 3, 3, 3, 3, 1, 1, 1 $ | $5$ | $3$ | $( 1, 6,11)( 3,13, 8)( 4,14, 9)( 5,10,15)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $5$ | $3$ | $( 1,11, 6)( 2, 7,12)$ |
| $ 3, 3, 3, 3, 1, 1, 1 $ | $10$ | $3$ | $( 1, 6,11)( 2, 7,12)( 3,13, 8)( 5,15,10)$ |
| $ 3, 3, 3, 3, 1, 1, 1 $ | $5$ | $3$ | $( 1,11, 6)( 2,12, 7)( 4, 9,14)( 5,10,15)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $5$ | $3$ | $( 2, 7,12)( 5,15,10)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $5$ | $3$ | $( 1,11, 6)( 4, 9,14)$ |
| $ 5, 5, 5 $ | $162$ | $5$ | $( 1, 4, 7,10,13)( 2, 5, 8,11,14)( 3, 6, 9,12,15)$ |
| $ 5, 5, 5 $ | $162$ | $5$ | $( 1, 7,13, 4,10)( 2, 8,14, 5,11)( 3, 9,15, 6,12)$ |
| $ 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $10$ | $3$ | $( 5,10,15)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $10$ | $3$ | $( 1,11, 6)( 3,13, 8)$ |
| $ 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $10$ | $3$ | $( 1, 6,11)( 3, 8,13)( 5,15,10)$ |
| $ 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $10$ | $3$ | $( 2, 7,12)( 4, 9,14)( 5,15,10)$ |
| $ 3, 3, 3, 3, 3 $ | $10$ | $3$ | $( 1,11, 6)( 2, 7,12)( 3,13, 8)( 4, 9,14)( 5,10,15)$ |
| $ 3, 3, 3, 3, 1, 1, 1 $ | $10$ | $3$ | $( 1, 6,11)( 2, 7,12)( 3, 8,13)( 4, 9,14)$ |
| $ 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1,11, 6)( 2,12, 7)( 3,13, 8)( 4,14, 9)( 5,15,10)$ |
| $ 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $10$ | $3$ | $( 3, 8,13)( 4,14, 9)( 5,10,15)$ |
| $ 3, 3, 3, 3, 1, 1, 1 $ | $10$ | $3$ | $( 1, 6,11)( 3,13, 8)( 4,14, 9)( 5,15,10)$ |
| $ 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $10$ | $3$ | $( 2, 7,12)( 3, 8,13)( 5,15,10)$ |
| $ 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $10$ | $3$ | $( 1, 6,11)( 2, 7,12)( 3,13, 8)$ |
| $ 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $10$ | $3$ | $( 2,12, 7)( 3, 8,13)( 4, 9,14)$ |
| $ 3, 3, 3, 3, 1, 1, 1 $ | $10$ | $3$ | $( 1,11, 6)( 2,12, 7)( 4, 9,14)( 5,15,10)$ |
| $ 3, 3, 3, 3, 3 $ | $10$ | $3$ | $( 1, 6,11)( 2,12, 7)( 3,13, 8)( 4, 9,14)( 5,10,15)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $10$ | $3$ | $( 2,12, 7)( 3,13, 8)$ |
| $ 3, 3, 3, 3, 1, 1, 1 $ | $10$ | $3$ | $( 1,11, 6)( 3,13, 8)( 4,14, 9)( 5,10,15)$ |
| $ 3, 3, 3, 3, 1, 1, 1 $ | $10$ | $3$ | $( 1, 6,11)( 2,12, 7)( 3,13, 8)( 5,15,10)$ |
| $ 15 $ | $162$ | $15$ | $( 1, 4, 7,10, 3, 6, 9,12,15, 8,11,14, 2, 5,13)$ |
| $ 15 $ | $162$ | $15$ | $( 1, 7,13, 4,10, 6,12, 3, 9,15,11, 2, 8,14, 5)$ |
| $ 15 $ | $162$ | $15$ | $( 1,13,10,12, 9, 6, 3,15, 2,14,11, 8, 5, 7, 4)$ |
| $ 15 $ | $162$ | $15$ | $( 1,10, 9, 3,12, 6,15,14, 8, 2,11, 5, 4,13, 7)$ |
| $ 6, 6, 2, 1 $ | $135$ | $6$ | $( 2,15,12, 5, 7,10)( 3, 9, 8, 4,13,14)( 6,11)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 1 $ | $135$ | $2$ | $( 1,11)( 2,10)( 3, 9)( 4, 8)( 5, 7)(12,15)(13,14)$ |
| $ 6, 6, 2, 1 $ | $135$ | $6$ | $( 1, 6)( 2, 5, 7,15,12,10)( 3, 9,13,14, 8, 4)$ |
| $ 6, 2, 2, 2, 2, 1 $ | $135$ | $6$ | $( 2, 5,12,10, 7,15)( 3,14)( 4,13)( 6,11)( 8, 9)$ |
| $ 6, 2, 2, 2, 2, 1 $ | $135$ | $6$ | $( 1,11)( 2,15)( 3,14,13, 4, 8, 9)( 5,12)( 7,10)$ |
| $ 6, 6, 2, 1 $ | $135$ | $6$ | $( 1, 6)( 2,10, 7, 5,12,15)( 3,14, 8, 9,13, 4)$ |
| $ 6, 6, 2, 1 $ | $135$ | $6$ | $( 2,10,12,15, 7, 5)( 3, 4,13, 9, 8,14)( 6,11)$ |
| $ 6, 2, 2, 2, 2, 1 $ | $135$ | $6$ | $( 1,11)( 2, 5)( 3, 4, 8,14,13, 9)( 7,15)(10,12)$ |
| $ 6, 2, 2, 2, 2, 1 $ | $135$ | $6$ | $( 1, 6)( 2,15, 7,10,12, 5)( 3, 4)( 8,14)( 9,13)$ |
Group invariants
| Order: | $2430=2 \cdot 3^{5} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | Data not available |
| Character table: Data not available. |