Group action invariants
| Degree $n$ : | $15$ | |
| Transitive number $t$ : | $40$ | |
| CHM label : | $[5^{3}:2]S(3)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,4)(2,8)(3,12)(6,9)(7,13)(11,14), (1,11)(2,7)(4,14)(5,10)(8,13), (1,6,11)(2,7,12)(3,8,13)(4,9,14)(5,10,15), (3,6,9,12,15) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 6: $S_3$ 10: $D_{5}$ 12: $D_{6}$ 20: $D_{10}$ 60: $D_5\times S_3$ 300: $((C_5^2 : C_3):C_2):C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $S_3$
Degree 5: None
Low degree siblings
15T40 x 3, 30T273 x 4, 30T275 x 4, 30T280 x 2, 30T284 x 4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $6$ | $5$ | $( 3, 6, 9,12,15)$ |
| $ 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $6$ | $5$ | $( 3, 9,15, 6,12)$ |
| $ 5, 5, 1, 1, 1, 1, 1 $ | $6$ | $5$ | $( 2, 5, 8,11,14)( 3, 6, 9,12,15)$ |
| $ 5, 5, 1, 1, 1, 1, 1 $ | $12$ | $5$ | $( 2, 5, 8,11,14)( 3, 9,15, 6,12)$ |
| $ 5, 5, 1, 1, 1, 1, 1 $ | $6$ | $5$ | $( 2, 5, 8,11,14)( 3,15,12, 9, 6)$ |
| $ 5, 5, 1, 1, 1, 1, 1 $ | $12$ | $5$ | $( 2, 5, 8,11,14)( 3,12, 6,15, 9)$ |
| $ 5, 5, 1, 1, 1, 1, 1 $ | $6$ | $5$ | $( 2, 8,14, 5,11)( 3, 9,15, 6,12)$ |
| $ 5, 5, 1, 1, 1, 1, 1 $ | $6$ | $5$ | $( 2, 8,14, 5,11)( 3,12, 6,15, 9)$ |
| $ 5, 5, 5 $ | $2$ | $5$ | $( 1, 4, 7,10,13)( 2, 5, 8,11,14)( 3, 6, 9,12,15)$ |
| $ 5, 5, 5 $ | $6$ | $5$ | $( 1, 4, 7,10,13)( 2, 5, 8,11,14)( 3, 9,15, 6,12)$ |
| $ 5, 5, 5 $ | $6$ | $5$ | $( 1, 4, 7,10,13)( 2, 5, 8,11,14)( 3,15,12, 9, 6)$ |
| $ 5, 5, 5 $ | $6$ | $5$ | $( 1, 4, 7,10,13)( 2, 5, 8,11,14)( 3,12, 6,15, 9)$ |
| $ 5, 5, 5 $ | $6$ | $5$ | $( 1, 4, 7,10,13)( 2, 8,14, 5,11)( 3, 9,15, 6,12)$ |
| $ 5, 5, 5 $ | $12$ | $5$ | $( 1, 4, 7,10,13)( 2, 8,14, 5,11)( 3,15,12, 9, 6)$ |
| $ 5, 5, 5 $ | $12$ | $5$ | $( 1, 4, 7,10,13)( 2, 8,14, 5,11)( 3,12, 6,15, 9)$ |
| $ 5, 5, 5 $ | $6$ | $5$ | $( 1, 4, 7,10,13)( 2,11, 5,14, 8)( 3,12, 6,15, 9)$ |
| $ 5, 5, 5 $ | $2$ | $5$ | $( 1, 7,13, 4,10)( 2, 8,14, 5,11)( 3, 9,15, 6,12)$ |
| $ 5, 5, 5 $ | $6$ | $5$ | $( 1, 7,13, 4,10)( 2, 8,14, 5,11)( 3,12, 6,15, 9)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1 $ | $125$ | $2$ | $( 4,13)( 5,14)( 6,15)( 7,10)( 8,11)( 9,12)$ |
| $ 3, 3, 3, 3, 3 $ | $50$ | $3$ | $( 1,11, 6)( 2,12, 7)( 3,13, 8)( 4,14, 9)( 5,15,10)$ |
| $ 15 $ | $100$ | $15$ | $( 1,11, 9, 4,14,12, 7, 2,15,10, 5, 3,13, 8, 6)$ |
| $ 15 $ | $100$ | $15$ | $( 1,11,12, 7, 2, 3,13, 8, 9, 4,14,15,10, 5, 6)$ |
| $ 6, 6, 3 $ | $250$ | $6$ | $( 1, 8, 3, 4, 5, 6)( 2, 9,13,11,15, 7)(10,14,12)$ |
| $ 2, 2, 2, 2, 2, 1, 1, 1, 1, 1 $ | $15$ | $2$ | $( 1,11)( 2, 7)( 4,14)( 5,10)( 8,13)$ |
| $ 5, 2, 2, 2, 2, 2 $ | $30$ | $10$ | $( 1,11)( 2, 7)( 3, 6, 9,12,15)( 4,14)( 5,10)( 8,13)$ |
| $ 5, 2, 2, 2, 2, 2 $ | $30$ | $10$ | $( 1,11)( 2, 7)( 3, 9,15, 6,12)( 4,14)( 5,10)( 8,13)$ |
| $ 10, 1, 1, 1, 1, 1 $ | $30$ | $10$ | $( 1,14, 4, 2, 7, 5,10, 8,13,11)$ |
| $ 10, 5 $ | $30$ | $10$ | $( 1,14, 4, 2, 7, 5,10, 8,13,11)( 3, 6, 9,12,15)$ |
| $ 10, 5 $ | $30$ | $10$ | $( 1,14, 4, 2, 7, 5,10, 8,13,11)( 3, 9,15, 6,12)$ |
| $ 10, 5 $ | $30$ | $10$ | $( 1,14, 4, 2, 7, 5,10, 8,13,11)( 3,15,12, 9, 6)$ |
| $ 10, 5 $ | $30$ | $10$ | $( 1,14, 4, 2, 7, 5,10, 8,13,11)( 3,12, 6,15, 9)$ |
| $ 10, 1, 1, 1, 1, 1 $ | $30$ | $10$ | $( 1, 2, 7, 8,13,14, 4, 5,10,11)$ |
| $ 10, 5 $ | $30$ | $10$ | $( 1, 2, 7, 8,13,14, 4, 5,10,11)( 3, 6, 9,12,15)$ |
| $ 10, 5 $ | $30$ | $10$ | $( 1, 2, 7, 8,13,14, 4, 5,10,11)( 3, 9,15, 6,12)$ |
| $ 10, 5 $ | $30$ | $10$ | $( 1, 2, 7, 8,13,14, 4, 5,10,11)( 3,15,12, 9, 6)$ |
| $ 10, 5 $ | $30$ | $10$ | $( 1, 2, 7, 8,13,14, 4, 5,10,11)( 3,12, 6,15, 9)$ |
| $ 10, 2, 2, 1 $ | $150$ | $10$ | $( 1, 8, 4, 5, 7, 2,10,14,13,11)( 6,15)( 9,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 1 $ | $75$ | $2$ | $( 1,11)( 2,10)( 4, 8)( 5, 7)( 6,15)( 9,12)(13,14)$ |
| $ 10, 2, 2, 1 $ | $150$ | $10$ | $( 1, 5, 7,14,13, 8, 4, 2,10,11)( 6,15)( 9,12)$ |
Group invariants
| Order: | $1500=2^{2} \cdot 3 \cdot 5^{3}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [1500, 125] |
| Character table: Data not available. |