Group action invariants
| Degree $n$ : | $15$ | |
| Transitive number $t$ : | $39$ | |
| CHM label : | $[1/2.D(5)^{3}]3$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,4)(2,8)(7,13)(11,14), (1,6,11)(2,7,12)(3,8,13)(4,9,14)(5,10,15), (3,6,9,12,15) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 3: $C_3$ 12: $A_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $C_3$
Degree 5: None
Low degree siblings
20T209, 30T271 x 2, 30T277, 30T279, 30T281Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $6$ | $5$ | $( 3, 6, 9,12,15)$ |
| $ 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $6$ | $5$ | $( 3, 9,15, 6,12)$ |
| $ 5, 5, 1, 1, 1, 1, 1 $ | $12$ | $5$ | $( 2, 5, 8,11,14)( 3, 6, 9,12,15)$ |
| $ 5, 5, 1, 1, 1, 1, 1 $ | $12$ | $5$ | $( 2, 5, 8,11,14)( 3, 9,15, 6,12)$ |
| $ 5, 5, 1, 1, 1, 1, 1 $ | $12$ | $5$ | $( 2, 8,14, 5,11)( 3, 6, 9,12,15)$ |
| $ 5, 5, 1, 1, 1, 1, 1 $ | $12$ | $5$ | $( 2, 8,14, 5,11)( 3, 9,15, 6,12)$ |
| $ 5, 5, 5 $ | $4$ | $5$ | $( 1, 4, 7,10,13)( 2, 5, 8,11,14)( 3, 6, 9,12,15)$ |
| $ 5, 5, 5 $ | $12$ | $5$ | $( 1, 4, 7,10,13)( 2, 5, 8,11,14)( 3, 9,15, 6,12)$ |
| $ 5, 5, 5 $ | $4$ | $5$ | $( 1, 4, 7,10,13)( 2, 5, 8,11,14)( 3,15,12, 9, 6)$ |
| $ 5, 5, 5 $ | $12$ | $5$ | $( 1, 4, 7,10,13)( 2, 5, 8,11,14)( 3,12, 6,15, 9)$ |
| $ 5, 5, 5 $ | $12$ | $5$ | $( 1, 4, 7,10,13)( 2, 8,14, 5,11)( 3, 9,15, 6,12)$ |
| $ 5, 5, 5 $ | $12$ | $5$ | $( 1, 4, 7,10,13)( 2, 8,14, 5,11)( 3,12, 6,15, 9)$ |
| $ 5, 5, 5 $ | $4$ | $5$ | $( 1, 7,13, 4,10)( 2, 8,14, 5,11)( 3, 9,15, 6,12)$ |
| $ 5, 5, 5 $ | $4$ | $5$ | $( 1, 7,13, 4,10)( 2, 8,14, 5,11)( 3,12, 6,15, 9)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1 $ | $75$ | $2$ | $( 4,13)( 5,14)( 7,10)( 8,11)$ |
| $ 5, 2, 2, 2, 2, 1, 1 $ | $150$ | $10$ | $( 3, 6, 9,12,15)( 4,13)( 5,14)( 7,10)( 8,11)$ |
| $ 5, 2, 2, 2, 2, 1, 1 $ | $150$ | $10$ | $( 3, 9,15, 6,12)( 4,13)( 5,14)( 7,10)( 8,11)$ |
| $ 3, 3, 3, 3, 3 $ | $100$ | $3$ | $( 1, 6,11)( 2, 7,12)( 3, 8,13)( 4, 9,14)( 5,10,15)$ |
| $ 15 $ | $100$ | $15$ | $( 1, 9,14, 4,12, 2, 7,15, 5,10, 3, 8,13, 6,11)$ |
| $ 15 $ | $100$ | $15$ | $( 1,12, 2, 7, 3, 8,13, 9,14, 4,15, 5,10, 6,11)$ |
| $ 15 $ | $100$ | $15$ | $( 1, 3, 8,13,15, 5,10,12, 2, 7, 9,14, 4, 6,11)$ |
| $ 15 $ | $100$ | $15$ | $( 1,15, 5,10, 9,14, 4, 3, 8,13,12, 2, 7, 6,11)$ |
| $ 3, 3, 3, 3, 3 $ | $100$ | $3$ | $( 1,11, 6)( 2,12, 7)( 3,13, 8)( 4,14, 9)( 5,15,10)$ |
| $ 15 $ | $100$ | $15$ | $( 1,11, 9, 4,14,12, 7, 2,15,10, 5, 3,13, 8, 6)$ |
| $ 15 $ | $100$ | $15$ | $( 1,11,12, 7, 2, 3,13, 8, 9, 4,14,15,10, 5, 6)$ |
| $ 15 $ | $100$ | $15$ | $( 1,11, 3,13, 8,15,10, 5,12, 7, 2, 9, 4,14, 6)$ |
| $ 15 $ | $100$ | $15$ | $( 1,11,15,10, 5, 9, 4,14, 3,13, 8,12, 7, 2, 6)$ |
Group invariants
| Order: | $1500=2^{2} \cdot 3 \cdot 5^{3}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [1500, 123] |
| Character table: Data not available. |