Group action invariants
| Degree $n$ : | $15$ | |
| Transitive number $t$ : | $37$ | |
| CHM label : | $1/2[5^{3}:4]S(3)$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2,4,8)(3,6,12,9)(5,10)(7,14,13,11), (1,4)(2,8)(3,12)(6,9)(7,13)(11,14), (1,6,11)(2,7,12)(3,8,13)(4,9,14)(5,10,15), (3,6,9,12,15) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 4: $C_4$ 6: $S_3$ 12: $C_3 : C_4$ 20: $F_5$ 60: $C_{15} : C_4$ 300: $(C_5^2 : C_3):C_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $S_3$
Degree 5: None
Low degree siblings
15T37 x 3, 30T282 x 2, 30T288 x 4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $12$ | $5$ | $( 3, 6, 9,12,15)$ |
| $ 5, 5, 1, 1, 1, 1, 1 $ | $12$ | $5$ | $( 2, 5, 8,11,14)( 3, 6, 9,12,15)$ |
| $ 5, 5, 1, 1, 1, 1, 1 $ | $12$ | $5$ | $( 2, 5, 8,11,14)( 3, 9,15, 6,12)$ |
| $ 5, 5, 1, 1, 1, 1, 1 $ | $12$ | $5$ | $( 2, 5, 8,11,14)( 3,15,12, 9, 6)$ |
| $ 5, 5, 1, 1, 1, 1, 1 $ | $12$ | $5$ | $( 2, 8,14, 5,11)( 3, 6, 9,12,15)$ |
| $ 5, 5, 5 $ | $4$ | $5$ | $( 1, 4, 7,10,13)( 2, 5, 8,11,14)( 3, 6, 9,12,15)$ |
| $ 5, 5, 5 $ | $12$ | $5$ | $( 1, 4, 7,10,13)( 2, 5, 8,11,14)( 3, 9,15, 6,12)$ |
| $ 5, 5, 5 $ | $12$ | $5$ | $( 1, 4, 7,10,13)( 2, 5, 8,11,14)( 3,15,12, 9, 6)$ |
| $ 5, 5, 5 $ | $12$ | $5$ | $( 1, 4, 7,10,13)( 2, 5, 8,11,14)( 3,12, 6,15, 9)$ |
| $ 5, 5, 5 $ | $12$ | $5$ | $( 1, 4, 7,10,13)( 2, 8,14, 5,11)( 3,15,12, 9, 6)$ |
| $ 5, 5, 5 $ | $12$ | $5$ | $( 1, 4, 7,10,13)( 2, 8,14, 5,11)( 3,12, 6,15, 9)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1 $ | $125$ | $2$ | $( 4,13)( 5,14)( 6,15)( 7,10)( 8,11)( 9,12)$ |
| $ 3, 3, 3, 3, 3 $ | $50$ | $3$ | $( 1,11, 6)( 2,12, 7)( 3,13, 8)( 4,14, 9)( 5,15,10)$ |
| $ 15 $ | $100$ | $15$ | $( 1,11, 9, 4,14,12, 7, 2,15,10, 5, 3,13, 8, 6)$ |
| $ 15 $ | $100$ | $15$ | $( 1,11,12, 7, 2, 3,13, 8, 9, 4,14,15,10, 5, 6)$ |
| $ 6, 6, 3 $ | $250$ | $6$ | $( 1, 8, 3, 4, 5, 6)( 2, 9,13,11,15, 7)(10,14,12)$ |
| $ 4, 4, 4, 2, 1 $ | $375$ | $4$ | $( 1, 2, 4, 8)( 5,10)( 6, 9,15,12)( 7,14,13,11)$ |
| $ 4, 4, 4, 2, 1 $ | $375$ | $4$ | $( 1, 2,13, 8)( 4,11,10,14)( 5, 7)( 6,12,15, 9)$ |
Group invariants
| Order: | $1500=2^{2} \cdot 3 \cdot 5^{3}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [1500, 115] |
| Character table: |
2 2 . . . . . . . . . . . 2 1 . . 1 2 2
3 1 . . . . . 1 . . . . . 1 1 1 1 1 . .
5 3 3 3 3 3 3 3 3 3 3 3 3 . 1 1 1 . . .
1a 5a 5b 5c 5d 5e 5f 5g 5h 5i 5j 5k 2a 3a 15a 15b 6a 4a 4b
2P 1a 5a 5b 5e 5d 5c 5f 5g 5h 5i 5k 5j 1a 3a 15a 15b 3a 2a 2a
3P 1a 5a 5b 5e 5d 5c 5f 5g 5h 5i 5k 5j 2a 1a 5f 5f 2a 4b 4a
5P 1a 1a 1a 1a 1a 1a 1a 1a 1a 1a 1a 1a 2a 3a 3a 3a 6a 4a 4b
7P 1a 5a 5b 5e 5d 5c 5f 5g 5h 5i 5k 5j 2a 3a 15b 15a 6a 4b 4a
11P 1a 5a 5b 5c 5d 5e 5f 5g 5h 5i 5j 5k 2a 3a 15b 15a 6a 4b 4a
13P 1a 5a 5b 5e 5d 5c 5f 5g 5h 5i 5k 5j 2a 3a 15b 15a 6a 4a 4b
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -1 -1
X.3 1 1 1 1 1 1 1 1 1 1 1 1 -1 1 1 1 -1 C -C
X.4 1 1 1 1 1 1 1 1 1 1 1 1 -1 1 1 1 -1 -C C
X.5 2 2 2 2 2 2 2 2 2 2 2 2 -2 -1 -1 -1 1 . .
X.6 2 2 2 2 2 2 2 2 2 2 2 2 2 -1 -1 -1 -1 . .
X.7 4 -1 -1 -1 4 -1 -1 -1 -1 4 -1 -1 . 4 -1 -1 . . .
X.8 4 -1 -1 -1 4 -1 -1 -1 -1 4 -1 -1 . -2 B /B . . .
X.9 4 -1 -1 -1 4 -1 -1 -1 -1 4 -1 -1 . -2 /B B . . .
X.10 12 7 2 2 2 2 -3 -3 -3 -3 -3 -3 . . . . . . .
X.11 12 2 2 -3 -3 -3 12 2 2 2 -3 -3 . . . . . . .
X.12 12 -3 -3 2 2 2 12 -3 -3 -3 2 2 . . . . . . .
X.13 12 2 -3 -3 2 -3 -3 -3 7 -3 2 2 . . . . . . .
X.14 12 -3 -3 2 2 2 -3 7 2 -3 -3 -3 . . . . . . .
X.15 12 -3 7 -3 2 -3 -3 2 -3 -3 2 2 . . . . . . .
X.16 12 2 -3 A -3 *A -3 2 -3 2 2 2 . . . . . . .
X.17 12 2 -3 *A -3 A -3 2 -3 2 2 2 . . . . . . .
X.18 12 -3 2 2 -3 2 -3 -3 2 2 *A A . . . . . . .
X.19 12 -3 2 2 -3 2 -3 -3 2 2 A *A . . . . . . .
A = 3*E(5)-2*E(5)^2-2*E(5)^3+3*E(5)^4
= (-1+5*Sqrt(5))/2 = 2+5b5
B = E(15)^7+E(15)^11+E(15)^13+E(15)^14
= (1-Sqrt(-15))/2 = -b15
C = -E(4)
= -Sqrt(-1) = -i
|