Properties

Label 15T35
Order \(810\)
n \(15\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $15$
Transitive number $t$ :  $35$
CHM label :  $1/2[3^{4}:2]D(5)$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,6,11)(4,14,9), (1,4,7,10,13)(2,5,8,11,14)(3,6,9,12,15), (1,14)(2,13)(3,12)(4,11)(5,10)(6,9)(7,8)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
10:  $D_{5}$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 3: None

Degree 5: $D_{5}$

Low degree siblings

15T34 x 4, 15T35 x 3, 30T191 x 4, 30T192 x 4, 45T121 x 8, 45T122 x 8, 45T123, 45T124

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $5$ $3$ $( 1, 6,11)( 4,14, 9)$
$ 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $5$ $3$ $( 1,11, 6)( 4, 9,14)$
$ 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $5$ $3$ $( 1, 6,11)( 2,12, 7)$
$ 3, 3, 3, 1, 1, 1, 1, 1, 1 $ $10$ $3$ $( 1,11, 6)( 2,12, 7)( 4,14, 9)$
$ 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $5$ $3$ $( 1,11, 6)( 2, 7,12)$
$ 3, 3, 3, 1, 1, 1, 1, 1, 1 $ $10$ $3$ $( 1,11, 6)( 4,14, 9)( 5,15,10)$
$ 3, 3, 3, 3, 1, 1, 1 $ $5$ $3$ $( 1, 6,11)( 2,12, 7)( 4, 9,14)( 5,15,10)$
$ 3, 3, 3, 3, 1, 1, 1 $ $5$ $3$ $( 1, 6,11)( 2, 7,12)( 4,14, 9)( 5,15,10)$
$ 3, 3, 3, 3, 1, 1, 1 $ $10$ $3$ $( 1,11, 6)( 2, 7,12)( 4, 9,14)( 5,15,10)$
$ 3, 3, 3, 3, 1, 1, 1 $ $5$ $3$ $( 1,11, 6)( 2,12, 7)( 4, 9,14)( 5,10,15)$
$ 3, 3, 3, 3, 1, 1, 1 $ $5$ $3$ $( 1,11, 6)( 2, 7,12)( 4,14, 9)( 5,10,15)$
$ 3, 3, 3, 3, 3 $ $10$ $3$ $( 1,11, 6)( 2,12, 7)( 3,13, 8)( 4,14, 9)( 5,10,15)$
$ 5, 5, 5 $ $162$ $5$ $( 1, 4, 7,10,13)( 2, 5, 8,11,14)( 3, 6, 9,12,15)$
$ 5, 5, 5 $ $162$ $5$ $( 1, 7,13, 4,10)( 2, 8,14, 5,11)( 3, 9,15, 6,12)$
$ 6, 2, 2, 2, 2, 1 $ $45$ $6$ $( 2,10)( 3, 4, 8,14,13, 9)( 5, 7)( 6,11)(12,15)$
$ 6, 2, 2, 2, 2, 1 $ $45$ $6$ $( 1, 6)( 2,10)( 3,14,13, 4, 8, 9)( 5, 7)(12,15)$
$ 2, 2, 2, 2, 2, 2, 2, 1 $ $45$ $2$ $( 1,11)( 2,10)( 3, 9)( 4, 8)( 5, 7)(12,15)(13,14)$
$ 6, 2, 2, 2, 2, 1 $ $45$ $6$ $( 2,10,12,15, 7, 5)( 3, 9)( 4, 8)( 6,11)(13,14)$
$ 6, 6, 2, 1 $ $45$ $6$ $( 1, 6)( 2,10,12,15, 7, 5)( 3, 4, 8,14,13, 9)$
$ 6, 6, 2, 1 $ $45$ $6$ $( 1,11)( 2,10,12,15, 7, 5)( 3,14,13, 4, 8, 9)$
$ 6, 6, 2, 1 $ $45$ $6$ $( 2,10, 7, 5,12,15)( 3,14,13, 4, 8, 9)( 6,11)$
$ 6, 2, 2, 2, 2, 1 $ $45$ $6$ $( 1, 6)( 2,10, 7, 5,12,15)( 3, 9)( 4, 8)(13,14)$
$ 6, 6, 2, 1 $ $45$ $6$ $( 1,11)( 2,10, 7, 5,12,15)( 3, 4, 8,14,13, 9)$

Group invariants

Order:  $810=2 \cdot 3^{4} \cdot 5$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  [810, 101]
Character table: Data not available.