Group action invariants
| Degree $n$ : | $15$ | |
| Transitive number $t$ : | $29$ | |
| Group : | $S_5 \times S_3$ | |
| CHM label : | $S(5)[x]S(3)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,11)(2,7)(4,14)(5,10)(8,13), (1,4)(6,9)(11,14), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 6: $S_3$ 12: $D_{6}$ 120: $S_5$ 240: $S_5\times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $S_3$
Degree 5: $S_5$
Low degree siblings
18T227, 30T165, 30T167, 30T170, 30T174, 30T178, 36T1249, 36T1250, 36T1251, 45T94Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 6,11)( 2, 7,12)( 3, 8,13)( 4, 9,14)( 5,10,15)$ |
| $ 2, 2, 2, 2, 2, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 2,12)( 3, 8)( 5,15)( 6,11)( 9,14)$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $10$ | $2$ | $( 1, 4)( 6, 9)(11,14)$ |
| $ 6, 3, 3, 3 $ | $20$ | $6$ | $( 1, 9,11, 4, 6,14)( 2, 7,12)( 3, 8,13)( 5,10,15)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1 $ | $30$ | $2$ | $( 1, 4)( 2,12)( 3, 8)( 5,15)( 6,14)( 9,11)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1 $ | $15$ | $2$ | $( 1, 4)( 2, 5)( 6, 9)( 7,10)(11,14)(12,15)$ |
| $ 6, 6, 3 $ | $30$ | $6$ | $( 1, 9,11, 4, 6,14)( 2,10,12, 5, 7,15)( 3, 8,13)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 1 $ | $45$ | $2$ | $( 1, 4)( 2,15)( 3, 8)( 5,12)( 6,14)( 7,10)( 9,11)$ |
| $ 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $20$ | $3$ | $( 1, 4, 7)( 2,11,14)( 6, 9,12)$ |
| $ 3, 3, 3, 3, 3 $ | $40$ | $3$ | $( 1, 9, 2)( 3, 8,13)( 4,12,11)( 5,10,15)( 6,14, 7)$ |
| $ 6, 3, 2, 2, 1, 1 $ | $60$ | $6$ | $( 1, 4, 7)( 2, 6,14,12,11, 9)( 3, 8)( 5,15)$ |
| $ 3, 3, 3, 2, 2, 2 $ | $20$ | $6$ | $( 1, 4, 7)( 2,11,14)( 3,15)( 5, 8)( 6, 9,12)(10,13)$ |
| $ 6, 3, 3, 3 $ | $40$ | $6$ | $( 1, 9, 2)( 3, 5,13,15, 8,10)( 4,12,11)( 6,14, 7)$ |
| $ 6, 3, 2, 2, 2 $ | $60$ | $6$ | $( 1, 4, 7)( 2, 6,14,12,11, 9)( 3, 5)( 8,15)(10,13)$ |
| $ 4, 4, 4, 1, 1, 1 $ | $30$ | $4$ | $( 1, 4, 7,10)( 2, 5,11,14)( 6, 9,12,15)$ |
| $ 12, 3 $ | $60$ | $12$ | $( 1, 9, 2,10, 6,14, 7,15,11, 4,12, 5)( 3, 8,13)$ |
| $ 4, 4, 4, 2, 1 $ | $90$ | $4$ | $( 1, 4, 7,10)( 2,15,11, 9)( 3, 8)( 5, 6,14,12)$ |
| $ 5, 5, 5 $ | $24$ | $5$ | $( 1, 4, 7,10,13)( 2, 5, 8,11,14)( 3, 6, 9,12,15)$ |
| $ 15 $ | $48$ | $15$ | $( 1, 9, 2,10, 3,11, 4,12, 5,13, 6,14, 7,15, 8)$ |
| $ 10, 5 $ | $72$ | $10$ | $( 1, 4, 7,10,13)( 2,15, 8, 6,14,12, 5, 3,11, 9)$ |
Group invariants
| Order: | $720=2^{4} \cdot 3^{2} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | [720, 767] |
| Character table: Data not available. |