Group action invariants
| Degree $n$ : | $15$ | |
| Transitive number $t$ : | $28$ | |
| CHM label : | $S_{6}(15)$ | |
| Parity: | $1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,9,10,3,14)(2,15,7,12,6)(4,5,11,13,8), (1,5)(2,7)(3,6)(4,15)(8,9)(12,13), (1,4)(2,6)(3,7)(5,15)(8,9)(12,13) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: None
Degree 5: None
Low degree siblings
6T16 x 2, 10T32, 12T183 x 2, 15T28, 20T145, 20T149 x 2, 30T164 x 2, 30T166 x 2, 30T176 x 2, 36T1252, 40T589, 40T592 x 2, 45T96Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1 $ | $15$ | $2$ | $( 4, 6)( 5, 7)( 8,10)( 9,11)$ |
| $ 3, 3, 3, 3, 1, 1, 1 $ | $40$ | $3$ | $( 3, 8,10)( 4,13, 6)( 5, 7,14)( 9,15,11)$ |
| $ 4, 4, 4, 2, 1 $ | $90$ | $4$ | $( 2, 5, 7,14)( 3, 8,13, 6)( 4,10)( 9,15,12,11)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1 $ | $45$ | $2$ | $( 2, 5)( 3,13)( 4,10)( 7,14)( 9,15)(11,12)$ |
| $ 6, 3, 3, 2, 1 $ | $120$ | $6$ | $( 2, 9, 5,12, 7,11)( 3, 6, 4)( 8,10,13)(14,15)$ |
| $ 4, 4, 4, 2, 1 $ | $90$ | $4$ | $( 2, 9, 5,15)( 3,10,13, 4)( 6, 8)( 7,11,14,12)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1 $ | $15$ | $2$ | $( 2, 9)( 3,13)( 5,15)( 6, 8)( 7,12)(11,14)$ |
| $ 5, 5, 5 $ | $144$ | $5$ | $( 1, 2, 3, 4,11)( 5,12,14, 8,15)( 6,13, 9, 7,10)$ |
| $ 6, 6, 3 $ | $120$ | $6$ | $( 1, 2, 3, 4,13, 9)( 5,10,15)( 6,11, 7,12,14, 8)$ |
| $ 3, 3, 3, 3, 3 $ | $40$ | $3$ | $( 1, 2,12)( 3, 9, 5)( 4, 6,13)( 7, 8,15)(10,11,14)$ |
Group invariants
| Order: | $720=2^{4} \cdot 3^{2} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | [720, 763] |
| Character table: |
2 4 4 1 3 4 1 3 4 . 1 1
3 2 1 2 . . 1 . 1 . 1 2
5 1 . . . . . . . 1 . .
1a 2a 3a 4a 2b 6a 4b 2c 5a 6b 3b
2P 1a 1a 3a 2b 1a 3a 2b 1a 5a 3b 3b
3P 1a 2a 1a 4a 2b 2a 4b 2c 5a 2c 1a
5P 1a 2a 3a 4a 2b 6a 4b 2c 1a 6b 3b
X.1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 -1 1 -1 1 -1 1 -1 1
X.3 5 -3 2 -1 1 . -1 1 . 1 -1
X.4 5 3 2 1 1 . -1 -1 . -1 -1
X.5 5 -1 -1 1 1 -1 -1 3 . . 2
X.6 5 1 -1 -1 1 1 -1 -3 . . 2
X.7 9 -3 . 1 1 . 1 -3 -1 . .
X.8 9 3 . -1 1 . 1 3 -1 . .
X.9 10 -2 1 . -2 1 . 2 . -1 1
X.10 10 2 1 . -2 -1 . -2 . 1 1
X.11 16 . -2 . . . . . 1 . -2
|