Group action invariants
| Degree $n$ : | $15$ | |
| Transitive number $t$ : | $26$ | |
| Group : | $C_3^4:C_5$ | |
| CHM label : | $[3^{4}]5$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,6,11)(4,14,9), (1,4,7,10,13)(2,5,8,11,14)(3,6,9,12,15) | |
| $|\Aut(F/K)|$: | $3$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 5: $C_5$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: None
Degree 5: $C_5$
Low degree siblings
15T26 x 7, 45T61 x 2, 45T62 x 16, 45T63 x 8Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $5$ | $3$ | $( 4, 9,14)( 5,15,10)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $5$ | $3$ | $( 4,14, 9)( 5,10,15)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $5$ | $3$ | $( 3, 8,13)( 5,15,10)$ |
| $ 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $5$ | $3$ | $( 3, 8,13)( 4, 9,14)( 5,10,15)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $5$ | $3$ | $( 3,13, 8)( 5,10,15)$ |
| $ 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $5$ | $3$ | $( 3,13, 8)( 4,14, 9)( 5,15,10)$ |
| $ 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $5$ | $3$ | $( 2, 7,12)( 4, 9,14)( 5,10,15)$ |
| $ 3, 3, 3, 3, 1, 1, 1 $ | $5$ | $3$ | $( 2, 7,12)( 3, 8,13)( 4,14, 9)( 5,15,10)$ |
| $ 3, 3, 3, 3, 1, 1, 1 $ | $5$ | $3$ | $( 2, 7,12)( 3,13, 8)( 4, 9,14)( 5,15,10)$ |
| $ 3, 3, 3, 3, 1, 1, 1 $ | $5$ | $3$ | $( 2, 7,12)( 3,13, 8)( 4,14, 9)( 5,10,15)$ |
| $ 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $5$ | $3$ | $( 2,12, 7)( 4,14, 9)( 5,15,10)$ |
| $ 3, 3, 3, 3, 1, 1, 1 $ | $5$ | $3$ | $( 2,12, 7)( 3, 8,13)( 4, 9,14)( 5,15,10)$ |
| $ 3, 3, 3, 3, 1, 1, 1 $ | $5$ | $3$ | $( 2,12, 7)( 3, 8,13)( 4,14, 9)( 5,10,15)$ |
| $ 3, 3, 3, 3, 1, 1, 1 $ | $5$ | $3$ | $( 2,12, 7)( 3,13, 8)( 4, 9,14)( 5,10,15)$ |
| $ 5, 5, 5 $ | $81$ | $5$ | $( 1, 2, 3, 4, 5)( 6, 7, 8, 9,10)(11,12,13,14,15)$ |
| $ 5, 5, 5 $ | $81$ | $5$ | $( 1, 3, 5, 2, 4)( 6, 8,10, 7, 9)(11,13,15,12,14)$ |
| $ 5, 5, 5 $ | $81$ | $5$ | $( 1, 4, 2, 5, 3)( 6, 9, 7,10, 8)(11,14,12,15,13)$ |
| $ 5, 5, 5 $ | $81$ | $5$ | $( 1, 5, 4, 3, 2)( 6,10, 9, 8, 7)(11,15,14,13,12)$ |
| $ 3, 3, 3, 3, 3 $ | $5$ | $3$ | $( 1, 6,11)( 2, 7,12)( 3, 8,13)( 4, 9,14)( 5,15,10)$ |
| $ 3, 3, 3, 3, 3 $ | $5$ | $3$ | $( 1, 6,11)( 2,12, 7)( 3,13, 8)( 4,14, 9)( 5,15,10)$ |
Group invariants
| Order: | $405=3^{4} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [405, 15] |
| Character table: Data not available. |